2 resultados para DERRAME PLEURAL
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Objective To improve the isolation rate and identification procedures for Haemophilus parasuis from pig tissues. Design Thirteen sampling sites and up to three methods were used to confirm the presence of H. parasuis in pigs after experimental challenge. Procedure Colostrum-deprived, naturally farrowed pigs were challenged intratracheally with H parasuis serovar 12 or 4. Samples taken during necropsy were either inoculated onto culture plates, processed directly for PCR or enriched prior to being processed for PCR. The recovery of H parasuis from different sampling sites and using different sampling methods was compared for each serovar. Results H parasuis was recovered from several sample sites for all serovar 12 challenged pigs, while the trachea was the only positive site for all pigs following serovar 4 challenge. The method of solid medium culture of swabs, and confirmation of the identity of cultured bacteria by PCR, resulted in 38% and 14% more positive results on a site basis for serovars 12 and 4, retrospectively, than direct PCR on the swabs. This difference was significant in the serovar 12 challenge. Conclusion Conventional culture proved to be more effective in detecting H parasuis than direct PCR or PCR on enrichment broths. For subacute (serovar 4) infections, the most successful sites for culture or direct PCR were pleural fluid, peritoneal fibrin and fluid, lung and pericardial fluid. For acute (serovar 12) infections, the best sites were lung, heart blood, affected joints and brain. The methodologies and key sampling sites identified in this study will enable improved isolation of H parasuis and aid the diagnosis of Glässer's disease.
Resumo:
The aim of the current study was to investigate whether polymerase chain reaction amplification of 16S ribosomal (r)RNA and a putative hemolysin gene operon, hhdBA, can be used to monitor live pigs for the presence of Haemophilus parasuis and predict the virulence of the strains present. Nasal cavity swabs were taken from 30 live, healthy, 1- to 8-week-old pigs on a weekly cycle from a commercial Thai nursery pig herd. A total of 27 of these pigs (90%) tested positive for H. parasuis as early as week 1 of age. None of the H. parasuis-positive samples from healthy pigs was positive for the hhdBA genes. At the same pig nursery, swab samples from nasal cavity, tonsil, trachea, and lung, and exudate samples from pleural/peritoneal cavity were taken from 30 dead pigs displaying typical pathological lesions consistent with Glasser disease. Twenty-two of 140 samples (15.7%) taken from 30 diseased pigs yielded a positive result for H. parasuis. Samples from the exudate (27%) yielded the most positive results, followed by lung, tracheal swab, tonsil, and nasal swab, respectively. Out of 22 positive samples, 12 samples (54.5%) harbored hhdA and/or hhdB genes. Detection rates of hhdA were higher than hhdB. None of the H. parasuis-positive samples taken from nasal cavity of diseased pigs tested positive for hhdBA genes. More work is required to determine if the detection of hhdBA genes is useful for identifying the virulence potential of H. parasuis field isolates.