2 resultados para Current systems
em eResearch Archive - Queensland Department of Agriculture
Resumo:
A wide range of goals and objectives have to be taken into account in natural resources management. Defining these objectives in operational terms, including dimensions such as sustainability, productivity, and equity, is by no means easy, especially if they must capture the diversity of community and stakeholder values. This is especially true in the coastal zone where land activities affect regional marine ecosystems. In this study, the aim was firstly to identify and hierarchically organise the goals and objectives for coastal systems, as defined by local stakeholders. Two case study areas are used within the Great Barrier Reef region being Mackay and Bowen–Burdekin. Secondly, the aim was to identify similarities between the case study results and thus develop a generic set of goals to be used as a starting point in other coastal communities. Results show that overarching high-level goals have nested sub-goals that contain a set of more detailed regional objectives. The similarities in high-level environmental, governance, and socio-economic goals suggest that regionally specific objectives can be developed based on a generic set of goals. The prominence of governance objectives reflects local stakeholder perceptions that current coastal zone management is not achieving the outcomes they feel important and that there is a need for increased community engagement and co-management. More importantly, it raises the question of how to make issues relevant for the local community and entice participation in the local management of public resources to achieve sustainable environmental, social, and economic management outcomes. © 2015 Springer-Verlag Berlin Heidelberg
Resumo:
Agricultural land has been identified as a potential source of greenhouse gas emissions offsets through biosequestration in vegetation and soil. In the extensive grazing land of Australia, landholders may participate in the Australian Government’s Emissions Reduction Fund and create offsets by reducing woody vegetation clearing and allowing native woody plant regrowth to grow. This study used bioeconomic modelling to evaluate the trade-offs between an existing central Queensland grazing operation, which has been using repeated tree clearing to maintain pasture growth, and an alternative carbon and grazing enterprise in which tree clearing is reduced and the additional carbon sequestered in trees is sold. The results showed that ceasing clearing in favour of producing offsets produces a higher net present value over 20 years than the existing cattle enterprise at carbon prices, which are close to current (2015) market levels (~$13 t–1 CO2-e). However, by modifying key variables, relative profitability did change. Sensitivity analysis evaluated key variables, which determine the relative profitability of carbon and cattle. In order of importance these were: the carbon price, the gross margin of cattle production, the severity of the tree–grass relationship, the area of regrowth retained, the age of regrowth at the start of the project, and to a lesser extent the cost of carbon project administration, compliance and monitoring. Based on the analysis, retaining regrowth to generate carbon income may be worthwhile for cattle producers in Australia, but careful consideration needs to be given to the opportunity cost of reduced cattle income.