3 resultados para Cultural Studies in the Future Tense
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Background: The territorial fishing zones of Australia and Indonesia are contiguous to the north of Australia in the Timor and Arafura Seas and in the Indian Ocean to the north of Christmas Island. The area surrounding the shared boundary consists of a variety of bio-diverse marine habitats including shallow continental shelf waters, oceanic trenches and numerous offshore islands. Both countries exploit a variety of fisheries species, including whaler (Carcharhinus spp.) and hammerhead sharks (Sphyrna spp.). Despite their differences in social and financial arrangements, the two countries are motivated to develop complementary co-management practices to achieve resource sustainability. An essential starting point is knowledge of the degree of population subdivision, and hence fisheries stock status, in exploited species. Results: Populations of four commercially harvested shark species (Carcharhinus obscurus, Carcharhinus sorrah, Prionace glauca, Sphyrna lewini) were sampled from northern Australia and central Indonesia. Neutral genetic markers (mitochondrial DNA control region sequence and allelic variation at co-dominant microsatellite loci) revealed genetic subdivision between Australian and Indonesian populations of C. sorrah. Further research is needed to address the possibility of genetic subdivision among C. obscurus populations. There was no evidence of genetic subdivision for P. glauca and S. lewini populations, but the sampling represented a relatively small part of their distributional range. For these species, more detailed analyses of population genetic structure is recommended in the future. Conclusion: Cooperative management between Australia and Indonesia is the best option at present for P. glauca and S. lewini, while C. sorrah and C. obscurus should be managed independently. On-going research on these and other exploited shark and ray species is strongly recommended. Biological and ecological similarity between species may not be a predictor of population genetic structure, so species-specific studies are recommended to provide new data to assist with sustainable fisheries management.
Resumo:
Converting from an existing irrigation system is often seen as high risk by the land owner. The significant financial investment and the long period over which the investment runs is also complicated by the uncertainty associated with long term input costs (such as energy), crop production, and the continually evolving natural resource management rules and policy. Irrigation plays a pivotal part in the Burdekin sugarcane farming system. At present the use of furrow irrigation is by far the most common form due to the ease of use, relatively low operating cost and well established infrastructure currently in place. The Mulgrave Area Farmer Integrated Action (MAFIA) grower group, located near Clare in the lower Burdekin region, identified the need to learn about sustainable farming systems with a focus on the environment, social and economic implications. In early 2007, Hesp Faming established a site to investigate the use of overhead irrigation as an alternative to furrow irrigation and its integration with new farming system practices, including Green Cane Trash Blanketing (GCTB). Although significant environmental and social benefits exist, the preliminary investment analysis indicates that the Overhead Low Pressure (OHLP) irrigation system is not adding financial value to the Hesp Farming business. A combination of high capital costs and other offsetting factors resulted in the benefits not being fully realised. A different outcome is achieved if Hesp Farming is able to realise value on the water saved, with both OHLP irrigation systems displaying a positive NPV. This case study provides a framework to further investigate the economics of OHLP irrigation in sugarcane and it is anticipated that with additional data a more definitive outcome will be developed in the future.
Resumo:
Aims To investigate, using culture-independent techniques, the presence and diversity of methanogenic archaea in the foregut of kangaroos. Methods and Results DNA was extracted from forestomach contents of 42 kangaroos (three species), three sheep and three cattle. Four qualitative and quantitative PCR assays targeting the archaeal domain (16S rRNA gene) or the functional methanogenesis gene, mcrA, were used to determine the presence and population density of archaea in kangaroos and whether they were likely to be methanogens. All ruminal samples were positive for archaea, produced PCR product of expected size, contained high numbers of archaea and high numbers of cells with mcrA genes. Kangaroos were much more diverse and contradictory. Fourteen kangaroos had detectable archaea with numbers 10- to 1000-fold fewer than sheep and cattle. Many kangaroos that did not possess archaea were positive for the mcrA gene and had detectable numbers of cells with this gene and vice versa. DNA sequence analysis of kangaroos' archaeal 16S rRNA gene clones show that many methanogens were related to Methanosphaera stadmanae. Other sequences were related to non-methanogenic archaea (Thermoplasma sp.), and a number of kangaroos had mcrA gene sequences related to methane oxidising archaea (ANME). Conclusions Discrepancies between qualitative and quantitative PCR assays for archaea and the mcrA gene suggest that the archaeal communities are very diverse and it is possible that novel species exist. Significance and Impact of the Study Archaea (in general) were below detectable limits in many kangaroos, especially Red kangaroos; when present they are in lower numbers than in ruminants, and the archaea are not necessarily methanogenic. The determination of why this is the case in the kangaroo foregut could assist in reducing emissions from other ecosystems in the future.