2 resultados para Crime in literature
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was parameterised and subsequently used to predict biomass production, yield, crop water and nitrogen (N) use, as well as long-term soil water and organic matter dynamics in wheat/chickpea systems at Tel Hadya, north-western Syria. The model satisfactorily simulated the productivity and water and N use of wheat and chickpea crops grown under different N and/or water supply levels in the 1998-99 and 1999-2000 experimental seasons. Analysis of soil-water dynamics showed that the 2-stage soil evaporation model in APSIM's cascading water-balance module did not sufficiently explain the actual soil drying following crop harvest under conditions where unused water remained in the soil profile. This might have been related to evaporation from soil cracks in the montmorillonitic clay soil, a process not explicitly simulated by APSIM. Soil-water dynamics in wheat-fallow and wheat-chickpea rotations (1987-98) were nevertheless well simulated when the soil water content in 0-0.45 m soil depth was set to 'air dry' at the end of the growing season each year. The model satisfactorily simulated the amounts of NO3-N in the soil, whereas it underestimated the amounts of NH 4-N. Ammonium fixation might be part of the soil mineral-N dynamics at the study site because montmorillonite is the major clay mineral. This process is not simulated by APSIM's nitrogen module. APSIM was capable of predicting long-term trends (1985-98) in soil organic matter in wheat-fallow and wheat-chickpea rotations at Tel Hadya as reported in literature. Overall, results showed that the model is generic and mature enough to be extended to this set of environmental conditions and can therefore be applied to assess the sustainability of wheat-chickpea rotations at Tel Hadya.
Resumo:
Although only recently described, Colletotrichum boninense is well established in literature as an anthracnose pathogen or endophyte of a diverse range of host plants worldwide. It is especially prominent on members of Amaryllidaceae, Orchidaceae, Proteaceae and Solanaceae. Reports from literature and preliminary studies using ITS sequence data indicated that C. boninense represents a species complex. A multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3, CAL) of 86 strains previously identified as C. boninense and other related strains revealed 18 clades. These clades are recognised here as separate species, including C. boninense s. str., C. hippeastri, C. karstii and 12 previously undescribed species, C. annellatum, C. beeveri, C. brassicicola, C. brasiliense, C. colombiense, C. constrictum, C. cymbidiicola, C. dacrycarpi, C. novae-zelandiae, C. oncidii, C. parsonsiae and C. torulosum. Seven of the new species are only known from New Zealand, perhaps reflecting a sampling bias. The new combination C. phyllanthi was made, and C. dracaenae Petch was epitypified and the name replaced with C. petchii. Typical for species of the C. boninense species complex are the conidiogenous cells with rather prominent periclinal thickening that also sometimes extend to form a new conidiogenous locus or annellations as well as conidia that have a prominent basal scar. Many species in the C. boninense complex form teleomorphs in culture. TAXONOMIC NOVELTIES: New combination - Colletotrichum phyllanthi (H. Surendranath Pai) Damm, P.F. Cannon & Crous. Name replacement - C. petchii Damm, P.F. Cannon & Crous. New species - C. annellatum Damm, P.F. Cannon & Crous, C. beeveri Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. brassicicola Damm, P.F. Cannon & Crous, C. brasiliense Damm, P.F. Cannon, Crous & Massola, C. colombiense Damm, P.F. Cannon, Crous, C. constrictum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. cymbidiicola Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. dacrycarpi Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. novae-zelandiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. oncidii Damm, P.F. Cannon & Crous, C. parsonsiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. torulosum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir. Typifications: Epitypifications - C. dracaenae Petch.