5 resultados para Copper and iron
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat(Triticum aestivum L) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses.
Resumo:
Brown spot (caused by Alternaria alternata) is a major disease of citrus in subtropical areas of Australia. A number of chemicals, the strobilurins azoxystrobin, trifloxystrobin, pyraclostrobin and methoxycrylate, a plant activator (acibenzolar), copper hydroxide, mancozeb, captan, iprodione and chlorothalonil/pyrimthanil were tested in the field for its control. Over three seasons, trees in a commercial orchard received 16, 14 and 7 fungicide sprays, respectively, commencing at flowering in the first season, and petal fall in the later seasons. In all experiments, the strobilurins used alone, or incorporated with copper and mancozeb, were as effective as, or better than the industry standard of copper and mancozeb alone. The only exception was trifloxystrobin, which when used alone was less effective than the industry standard. Acibenzolar used alone was ineffective. Applying a mixture of azoxystrobin and acibenzolar was found to reduce the incidence of brown spot compared with applying azoxystrobin alone but, in either case, disease levels were not found to be significantly different to the industry standard. Captan, iprodione and chlorothalonil/pyrimthanil were as effective as the industry standard. The incidence and severity of rind damage were significantly lowest in the azoxystrobin, methoxycrylate, iprodione and chlorothalonil/pyrimthanil treatments. Medium and high rates of trifloxystrobin (0.07 g/L, 0 .15 g/L) and pyraclostrobin (0.8 g/L, 1.2 g/L) applied alone were the only treatments found to be IPM-incompatible as shown by the elevated level of scale infection on fruit.
Resumo:
The aim of this study is to identify the biochemical mechanism of phosphine toxicity and resistance, using Caenorhabditis elegans as a model organism. To date, the precise mode of phosphine action is unclear. In this report, we demonstrate the following dose-dependent actions of phosphine, in vitro: (1) reduction of ferric iron (Fe3+) to ferrous iron (Fe2+), (2) release of iron from horse ferritin, (3) and the peroxidation of lipid as a result of iron release from ferritin. Using in situ hybridization, we show that the ferritin genes of C. elegans, both ferritin-1 and ferritin-2, are expressed along the digestive tract with greatest expression at the proximal and distal ends. Basal expression of the ferritin-2 gene, as determined by quantitative PCR, is approximately 80 times that of ferritin-1. However, transcript levels of ferritin-1 are induced at least 20-fold in response to phosphine, whereas there is no change in the level of ferritin-2. This resembles the reported pattern of ferritin gene regulation by iron, suggesting that phosphine toxicity may be related to an increase in the level of free iron. Indeed, iron overload increases phosphine toxicity in C. elegans at least threefold. Moreover, we demonstrate that suppression of ferritin-2 gene expression by RNAi, significantly increases sensitivity to phosphine. This study identifies similarities between phosphine toxicity and iron overload and demonstrates that phosphine can trigger iron release from storage proteins, increasing lipid peroxidation, leading to cell injury and/or cell death.
Resumo:
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed in coastal Queensland, Australia. There is a lack of quantitative data on its leaf chemistry and its impact on soil properties. Soils from infested vs uninfested areas, and leaves of M. unguis-cati and three co-occurring vine species (one exotic, two native) were collected at six sites (riparian and non-riparian) in south-eastern Queensland. Effects of invasion status, species, site and habitat type were examined using univariate and multivariate analyses. Habitat type had a greater effect on soil nutrients than on leaf chemistry. Invasion effect of M. unguis-cati on soil chemistry was more pronounced in non-riparian than in riparian habitat. Significantly higher values were obtained in M. unguis-cati infested (vs. uninfested) soils for ~50% of traits. Leaf ion concentrations differed significantly between exotic and native vines. Observed higher leaf-nutrient load (especially nitrogen, phosphorus and potassium) in exotic plants aligns with the preference of invasive plant species for disturbed habitats with higher nutrient input. Higher load of trace elements (aluminium, boron, cadmium and iron) in its leaves suggests that cycling of heavy-metal ions, many of which are potentially toxic at excess level, could be accelerated in soils of M. unguis-cati-invaded landscape. Although inferences from the present study are based on correlative data, the consistency of the patterns across many sites suggests that M. unguis-cati may improve soil fertility and influence nutrient cycling, perhaps through legacy effects of its own litter input.
Resumo:
The influence of a once only administration of a metabolite of vitamin D3 (HY [middle dot] D(R)-25-hydroxy vitamin D3) on myofibrillar meat tenderness in Australian Brahman cattle was studied. Ninety-six Brahman steers of three phenotypes (Indo-Brazil, US and US/European) and with two previous hormonal growth promotant (HGP) histories (implanted or not implanted with Compudose(R)) were fed a standard feedlot ration for 70 d. Treatment groups of 24 steers were offered daily 10 g/head HY [middle dot] D(R) (125 mg 25-hydroxyvitamin D3) for 6, 4, or 2 d before slaughter. One other group of 24 steers was given the basal diet without HY [middle dot] D(R). Feed lot performance, blood and muscle samples and carcass quality data were collected at slaughter. Calcium, magnesium, potassium, sodium, iron and Vitamin D3 metabolites were measured in plasma and longissimus dorsi muscle. Warner-Bratzler (WB) shear force (peak force, initial yield) and other objective meat quality measurements were made on the longissimus dorsi muscle of each steer after ageing for 1, 7 and 14 d post-mortem at 0-2 [deg]C.There were no significant effects of HY [middle dot] D(R) supplements on average daily gain (ADG, 1.28-1.45 kg/d) over the experimental period. HY [middle dot] D(R) supplements given 6 d prior to slaughter resulted in significantly higher (P (R)) by phenotype/HGP interaction for peak force (P = 0.028), in which Indo-Brazil steers without previous HGP treatment responded positively (increased tenderness) to HY [middle dot] D(R) supplements at 2 d when compared with Indo-Brazil steers previously given HGP. There were no significant effects of treatment on other phenotypes. HY [middle dot] D(R) supplements did not affect muscle or plasma concentrations of calcium, potassium or sodium, but did significantly decrease plasma magnesium and iron concentrations when given 2 d before slaughter. There were no detectable amounts of 25-hydroxyvitamin D3 in the blood or muscle of any cattle at slaughter.