3 resultados para Contrasting Cultivars
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The Australian Sweetpotato Growers Association partnered researchers from Agri-Science Queensland (with co-funding from Horticulture Australia Limited) to identify new, high performing sweetpotato cultivars with diverse colours and tastes. The project evaluated a mix of purple, red, orange and white skin and flesh, tailored for Australian growers and consumers. Australia's sweetpotato market currently relies on one gold cultivar for 90% of national production. Major retailers were requesting a reliable supply of quality sweetpotatoes in emerging categories such as red or white skin or purple flesh. To identify suitable cultivars, over 40 new sweetpotato cultivars were virus tested, and extensively evaluated in multiple experiments in Queensland and northern New South Wales. Larger-scale plantings by growers, using standard agronomy, provided additional performance feedback under commercial conditions. In partnership with growers and wholesalers, cultivars were evaluated in field and laboratory for desired characteristics such as shape, size range, skin and flesh colour, estimates of productivity and suitability for commercial production, cooking characteristics and taste. New high performing gold cultivars had better soil insect and nematode tolerance than the current cultivars. The new colours offered diverse health-related opportunities for consumers, more anthocyanins in purple-fleshed cultivars; higher beta carotene content in new gold fleshed cultivars; and potentially lower GI in white-fleshed cultivars. To enhance adoption, the industry/research partnership will tailor agronomic guidelines to maximise on-farm performance and identify niche marketing pathways for each of the cultivars. Increased consumption of this versatile vegetable will drive sweetpotato industry development and expansion into the future.
Resumo:
BACKGROUND AND AIMS: Silicon has been shown to enhance the resistance of plants to fungal and bacterial pathogens. Here, the effect of potassium silicate was assessed on two cotton (Gossypium hirsutum) cultivars subsequently inoculated with Fusarium oxysporum f. sp. vasinfectum (Fov). Sicot 189 is moderately resistant whilst Sicot F-1 is the second most resistant commercial cultivar presently available in Australia. METHODS: Transmission and light microscopy were used to compare cellular modifications in root cells after these different treatments. The accumulation of phenolic compounds and lignin was measured. KEY RESULTS: Cellular alterations including the deposition of electron-dense material, degradation of fungal hyphae and occlusion of endodermal cells were more rapidly induced and more intense in endodermal and vascular regions of Sicot F-1 plants supplied with potassium silicate followed by inoculation with Fov than in similarly treated Sicot 189 plants or in silicate-treated plants of either cultivar not inoculated with Fov. Significantly more phenolic compounds were present at 7 d post-infection (dpi) in root extracts of Sicot F-1 plants treated with potassium silicate followed by inoculation with Fov compared with plants from all other treatments. The lignin concentration at 3 dpi in root material from Sicot F-1 treated with potassium silicate and inoculated with Fov was significantly higher than that from water-treated and inoculated plants. CONCLUSIONS: This study demonstrates that silicon treatment can affect cellular defence responses in cotton roots subsequently inoculated with Fov, particularly in Sicot F-1, a cultivar with greater inherent resistance to this pathogen. This suggests that silicon may interact with or initiate defence pathways faster in this cultivar than in the less resistant cultivar.
Resumo:
Increased productivity in sorghum has been achieved in the developed world using hybrids. Despite their yield advantage, introduced hybrids have not been adopted in Ethiopia due to the lack of adaptive traits, their short plant stature and small grain size. This study was conducted to investigate hybrid performance and the magnitude of heterosis of locally adapted genotypes in addition to introduced hybrids in three contrasting environments in Ethiopia. In total, 139 hybrids, derived from introduced seed parents crossed with locally adapted genotypes and introduced R lines, were evaluated. Overall, the hybrids matured earlier than the adapted parents, but had higher grain yield, plant height, grain number and grain weight in all environments. The lowland adapted hybrids displayed a mean better parent heterosis (BPH) of 19%, equating to 1160 kg ha− 1 and a 29% mean increase in grain yield, in addition to increased plant height and grain weight, in comparison to the hybrids derived from the introduced R lines. The mean BPH for grain yield for the highland adapted hybrids was 16% in the highland and 52% in the intermediate environment equating to 698 kg ha− 1 and 2031 kg ha− 1, respectively, in addition to increased grain weight. The magnitude of heterosis observed for each hybrid group was related to the genetic distance between the parental lines. The majority of hybrids also showed superiority over the standard check varieties. In general, hybrids from locally adapted genotypes were superior in grain yield, plant height and grain weight compared to the high parents and introduced hybrids indicating the potential for hybrids to increase productivity while addressing farmers' required traits.