28 resultados para Continuum Damage
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Traps baited with synthetic aggregation pheromone and fermenting bread dough were used to monitor seasonal incidence and abundance of the ripening fruit pests, Carpophilus hemipterus (L.), C. mutilatus Erichson and C. davidsoni Dobson in stone fruit orchards in the Leeton district of southern New South Wales during five seasons (1991-96). Adult beetles were trapped from September-May, but abundance varied considerably between years with the amount of rainfall in December-January having a major influence on population size and damage potential during the canning peach harvest (late February-March). Below average rainfall in December-January was associated with mean trap catches of < 10 beetles/trap/week in low dose pheromone traps during the harvest period in 1991/92 and 1993/94 and no reported damage to ripening fruit. Rainfall in December-January 1992/93 was more than double the average and mean trap catches ranged from 8-27 beetles/week during the harvest period with substantial damage to the peach crop. December-January rainfall was also above average in 1994/95 and 1995/96 and means of 50-300 beetles/trap/week were recorded in high dose pheromone traps during harvest periods. Carpophilus spp. caused economic damage to peach crops in both seasons. These data indicate that it may be possible to predict the likelihood of Carpophilus beetle damage to ripening stone fruit in inland areas of southern Australia, by routine pheromone-based monitoring of beetle populations and summer temperatures and rainfall.
Resumo:
A survey for mycotoxins and fungal damage in maize (Zea mays L.) grown during 1982 in Far North Queensland is reported. This season had a rainfall distribution which was typical for the reglon. The 293 samples examined came from 11 1 farms in eight maize-growing districts. The samples were first subjected to rapid screening tests for fungal damage. Aflatoxins B1, B2, G1, G2 ochratoxin A, T-2 toxin, and sterigmatocystin were not detected, but zearalenone was found in 85% of the samples. The concentrations of zearalenone were correlated with the extent of Gibberella zeae cob rot as indicated by the proportion (up to 2%) of kernels in each sample having a reddish-purple discoloration. In four samples the zearalenone concentration exceeded 1 mg kg-1, but the mean ¦ s.d. (n = 293) concentration in all samples was 0.17 ¦ 0.225 mg kg-1. Concentrations were highest in districts with the highest rainfall during the period of maize growth.
Resumo:
Different degrees of severity of threshing were imposed during combine-harvesting of seed of Gatton panic, a cultivar of Panicum maximum , to determine effects of degree of threshing damage on subsequent properties of seed. Threshing cylinder peripheral speeds and concave clearances covering the normal range employed commercially were varied experimentally in the harvest of 2 crops grown in north Queensland. Harvested seed was dried and cleaned, then stored under ambient conditions. The extent of physical damage was measured, and samples were tested at intervals for viability, germination, dormancy and seedling emergence from soil in a glasshouse and in the field over the 2 seasons following harvest. Physical damage increased as peripheral rotor speed rose and (though less markedly) as concave clearance was reduced. As the level of damage increased, viability was progressively reduced, life expectancy was shortened, and dormancy was broken. When the consequences were measured as seedling emergence from soil, the adverse effects on viability tended to cancel out the benefits of dormancy-breaking, leaving few net differences attributable to the degree of threshing severity. We concluded that there would be no value in trying to manipulate the quality of seed produced for normal commercial use through choice of cylinder settings, but that deliberate light or heavy threshing could benefit special-purpose seed, destined, respectively, for long-term storage or immediate use.
Resumo:
The damage potential of two phytophagous scarab larvae on groundnut (peanut) yield was determined. Holotrichia serrata, a root and pod feeding species from southern India, was studied in microplots while the damage potential of Heteronyx piceus, a pod feeder from Queensland, Australia, was determined by analysis of on-farm chemical-rate trials. H. serrata larva reduced groundnut yield by an average of 7.52 g/ larva. In crops yielding less and more than 1900 kg ha-1, H. piceus reduced yield by 4.20 g and 1.43 g/ larva, respectively. These damage potential estimates were used to determine provisional economic injury levels (EIL). For H. piceus, the provisional EIL is 1.67 and 4.91 larvae/ row-metre in crops yielding less and more than 1900 kg/ha, respectively. For H. serrata, the provisional EIL is one H. serrata larva in 7.1 m2. As more than 70% of southern India groundnut fields have Holotrichia populations greater than 1 larva in 1.35 m2, more widespread use of chlorpyrifos seed dressing of groundnut is likely to produce regional economic benefits.
Resumo:
The seed-feeding jewel bug, Agonosoma trilineatum (F.), is an introduced biological control agent for bellyache bush, Jatropha gossypiifolia L. To quantify the damage potential of this agent, shadehouse experiments were conducted with individual bellyache bush plants exposed to a range of jewel bug densities (0, 6 or 24 jewel bugs/plant). The level of abortion of both immature and mature seed capsules and impacts on seed weight and seed viability were recorded in an initial short-term study. The ability of the jewel bug to survive and cause sustained damage was then investigated by measuring seed production, the survival of adults and nymph density across three 6-month cycles. The level of seed capsule abortion caused by the jewel bug was significantly affected by the maturity status of capsules and the density of insects present. Immature capsules were most susceptible and capsule abortion increased with jewel bug density. Similarly, on average, the insects reduced the viability of bellyache bush seeds by 79% and 89% at low and high densities, respectively. However, sustaining jewel bug populations for prolonged periods proved difficult. Adult survival at the end of three 6-month cycles averaged 11% and associated reductions in viable seed production ranged between 55% and 77%. These results suggest that the jewel bug has the potential to reduce the number of viable seeds entering the soil seed bank provided populations can be established and maintained at sufficiently high densities.
Resumo:
Laboratory and field data reported in the literature are confusing with regard to “adequate” protection thresholds for borate timber preservatives. The confusion is compounded by differences in termite species, timber species and test methodology. Laboratory data indicate a borate retention of 0.5% mass/mass (m/m) boric acid equivalent (BAE) would cause >90% termite mortality and restrict mass loss in test specimens to ≤5%. Field data generally suggest that borate retentions appreciably >0.5% m/m BAE are required. We report two field experiments with varying amounts of untreated feeder material in which Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) responses to borate-treated radiata (Monterey) pine, Pinus radiata D. Don, were measured. The apparently conflicting results between laboratory and field data are explained by the presence or absence of untreated feeder material in the test environment. In the absence of untreated feeder material, wood containing 0.5% BAE provided adequate protection from Coptotermes sp., whereas in the presence of untreated feeder material, increased retentions were required. Furthermore, the retentions required increased with increased amounts of susceptible material present. Some termites, Nasutitermes sp. and Mastotermes darwiniensis Froggatt, for example, are borate-tolerant and borate timber preservatives are not a viable management option with these species. The lack of uniform standards for termite test methodology and assessment criteria for efficacy across the world is recognized as a difficulty with research into the performance of timber preservatives with termites. The many variables in laboratory and field assays make “prescriptive” standards difficult to recommend. The use of “performance” standards to define efficacy criteria (“adequate” protection) is discussed.
Resumo:
Whether or not termites initiate damage to timber via the end grain may determine the need for spot-treating the exposed untreated cut ends of envelope-treated softwood framing material. Australian Coptotermes acinaciformis (Froggatt) were field-tested for their ability to initiate feeding via the end grain of timber (35 × 90 mm) treated with a repellent Tanalith® T envelope. Specimens of commercial radiata pine Pinus radiata D.Don framing timber (untreated) and slash pine Pinus elliottii Englem. (untreated and envelope-treated) were partially clad in fine stainless steel mesh. Clad and unclad specimens were exposed to C. acinaciformis near Townsville, North Queensland, Australia, for four months. Results showed that this species of termite can indeed damage timber via the end grain, including exposed untreated cut ends of envelope-treated material as demonstrated earlier for different populations of C. acinaciformis. Differences between the test conditions in field trials carried out at different times (where C. acinaciformis either did or did not damage timber via the end grain) are discussed. Clearly, outcomes from field studies with preservative-treated materials are dependent upon experimental conditions. Notably, the amount of bait wood (highly termite-susceptible timber substrate) offered in a given method can strongly influence the termite response. Further investigation is required to standardise this aspect of conditions in protocols for the assessment of wood preservatives.
Resumo:
This study examined post-release survival in sand flathead (Platycephalus bassensis) and whether there were survival benefits from the use of circle hooks over conventional hook patterns. Anatomical hooking location was the major factor contributing to mortality, with an almost 100% survival rate for fish hooked in the lip, mouth or eye (shallow-hooked) compared with around 64% for fish hooked in the throat or gut (deep-hooked). Mortality in deep-hooked fish was generally associated with injuries to vital organs (gills, heart, liver) and survival was significantly lower if bleeding was associated with injury (54% compared with 85% for non-bleeders). Circle hooks resulted in significantly lower deep-hooking rates (1%) compared with conventional hook types (4-9%) and, based on catch rates, were at least as effective as conventional hook patterns. Estimated survival rates for line-caught sand flathead were high, over 99% for circle hooks and between 94 and 97% for conventional hooks. These findings support the efficacy of management strategies based on size and bag limits and the practice of catch-and-release fishing for sand flathead, as well as a potential conservation benefit from the use of circle hooks.
Resumo:
Indo-Pacific mangrove swamps and seagrass beds are commonly located in close proximity to each other, often creating complex ecosystems linked by biological and physical processes. Although they are thought to provide important nursery habitats for fish, only limited information exists about their usage by fish outside of estuaries. The present study investigated fish assemblages in non-estuarine intertidal habitats where mangroves and seagrass overlap (the mangrove-seagrass continuum). Three habitats (mangrove, mangrove edge, seagrass) were sampled at 4 sites of the Wakatobi Marine National Park, Indonesia, using underwater visual census. Ninety-one species of fish were observed at a mean density of 130.1 +/- 37.2 ind. 1000 m(-2). Predatory fish (fish that feed on invertebrates and/or fish) were the most dominant feeding groups in the mangroves, whilst omnivores dominated on the mangrove edge and in the seagrass. Although the habitats along the mangrove-seagrass continuum were observed to be important for many fish, only 22 of the 942 coral reef species known within the area utilised mangroves as nursery habitat and only 15 utilised seagrass. Despite finding evidence that nursery grounds in mangroves and seagrass may not directly support high coral reef fish diversity, many of the coral reef nursery species found in this study are likely to be key herbivores or apex predators as adult fish on local coral reefs, and thus highly important to local fisheries. Although mangroves are not permanently inundated by the tide, this study highlights their importance as fish habitats, which at high tide support a greater abundance of fish than seagrass beds. In the light of the high rate of destruction of these habitats, their role in supporting fish assemblages requires consideration in marine resource management programs.
Resumo:
Commercial and recreational harvesting of pigs is often encouraged by pest managers because it is essentially a ‘free’ reduction in pest density. However, the reduction in numbers may provide minimal damage mitigation and may be inappropriately allocated in space and time. Additionally, more effective control (e.g. baiting) may not occur because of the incorrect perception that harvesting is effective or because pigs are valued for recreational use.
Resumo:
Koster´s curse is a highly invasive, perennial shrub with potential to become a major weed in many parts of Queensland and elsewhere in Australia. Presently, there is one infestation discovered in Australia and the species is a Class 1 weed. It grows to 5 m and can produce over 500 berries annually which are dispersed by birds and water. This study quantified growth and the effects of damage on survival and time to reproduction under both field and shade house conditions in the Wet Tropics of north Queensland. Plants recovered to their original size and were capable of setting seed in as few as 86 days and 194 days after being cut back to 10 cm and 0 cm respectively.
Resumo:
Eriophyid mites (Acari: Eriophyoidea: Eriophyidae: Rhombacus sp. and Acalox ptychocarpi Keifer) are recently-emerged pests of commercial eucalypt plantations in subtropical Australia. They cause severe blistering, necrosis and leaf loss to Corymbia citriodora subsp. variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, one of the region's most important hardwood plantation species. In this study we examine the progression, incidence and severity of these damage symptoms. We also measure within-branch colonisation by mites to identify dispersive stages, and estimate the relative abundance of the two co-occurring species. Rhombacus sp., an undescribed species, was numerically dominant, accounting for over 90% of all adult mites. Adults were the dispersive stage, moving mostly within branches, but 12% of recruitment onto new leaves occurred on previously uninfested branches. Damage incidence and severity were correlated, while older leaves had more damage than younger leaves. "Patch-type" damage was less frequent but was associated with higher mite numbers and damage scores than "spot-type" damage, while leaf discoloration symptoms related mostly to leaf age.
Resumo:
The response of soybean (Glycine max) and dry bean (Phaseolus vulgaris) to feeding by Helicoverpa armigera during the pod-fill stage was studied in irrigated field cages over three seasons to determine the relationship between larval density and yield loss, and to develop economic injury levels. H. armigera intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the dry bean experiment, yield loss occurred at a rate 6.00 ± 1.29 g/HIE while the rates of loss in the three soybean experiments were 4.39 ± 0.96 g/HIE, 3.70 ± 1.21 g/HIE and 2.12 ± 0.71 g/HIE. These three slopes were not statistically different (P > 0.05) and the pooled estimate of the rate of yield loss was 3.21 ± 0.55 g/HIE. The first soybean experiment also showed a split-line form of damage curve with a rate of yield loss of 26.27 ± 2.92 g/HIE beyond 8.0 HIE and a rapid decline to zero yield. In dry bean, H. armigera feeding reduced total and undamaged pod numbers by 4.10 ± 1.18 pods/HIE and 12.88 ± 1.57 pods/HIE respectively, while undamaged seed numbers were reduced by 35.64 ± 7.25 seeds/HIE. In soybean, total pod numbers were not affected by H. armigera infestation (out to 8.23 HIE in Experiment 1) but seed numbers (in Experiments 1 and 2) and the number of seeds/pod (in all experiments) were adversely affected. Seed size increased with increases in H. armigera density in two of the three soybean experiments, indicating plant compensatory responses to H. armigera feeding. Analysis of canopy pod profiles indicated that loss of pods occurred from the top of the plant downwards, but with an increase in pod numbers close to the ground at higher pest densities as the plant attempted to compensate for damage. Based on these results, the economic injury levels for H. armigera on dry bean and soybean are approximately 0.74 HIE and 2.31 HIE/m2, respectively (0.67 and 2.1 HIE/row-m for 91 cm rows).
Resumo:
The response of vegetative soybean (Glycine max) to Helicoverpa armigera feeding was studied in irrigated field cages over three years in eastern Australia to determine the relationship between larval density and yield loss, and to develop economic injury levels. Rather than using artificial defoliation techniques, plants were infested with either eggs or larvae of H. armigera, and larvae allowed to feed until death or pupation. Larvae were counted and sized regularly and infestation intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the two experiments where yield loss occurred, the upper threshold for zero yield loss was 7.51 ± 0.21 HIEs and 6.43 ± 1.08 HIEs respectively. In the third experiment, infestation intensity was lower and no loss of seed yield was detected up to 7.0 HIEs. The rate of yield loss/HIE beyond the zero yield loss threshold varied between Experiments 1 and 2 (-9.44 ± 0.80 g and -23.17 ± 3.18 g, respectively). H. armigera infestation also affected plant height and various yield components (including pod and seed numbers and seeds/pod) but did not affect seed size in any experiment. Leaf area loss of plants averaged 841 and 1025 cm2/larva in the two experiments compared to 214 and 302 cm2/larva for cohort larvae feeding on detached leaves at the same time, making clear that artificial defoliation techniques are unsuitable for determining H. armigera economic injury levels on vegetative soybean. Analysis of canopy leaf area and pod profiles indicated that leaf and pod loss occurred from the top of the plant downwards. However, there was an increase in pod numbers closer to the ground at higher pest densities as the plant attempted to compensate for damage. Defoliation at the damage threshold was 18.6 and 28.0% in Experiments 1 and 2, indicating that yield loss from H. armigera feeding occurred at much lower levels of defoliation than previously indicated by artificial defoliation studies. Based on these results, the economic injury level for H. armigera on vegetative soybean is approximately 7.3 HIEs/row-metre in 91 cm rows or 8.0 HIEs/m2.
Resumo:
Mangoes can express several skin disorders following important postharvest treatments. Responses are often cultivar specific. This paper reports the responses of two new Australian mango cultivars to some of these treatments. 'Honey Gold' mango develops "under skin browning" early during cold storage. This is thought to be partly caused by a discolouration of the latex vessels which then spreads to the surrounding cells. The symptoms appear to be worse in fruit from hotter production areas and that have been cooled to temperatures below 18C soon after harvest. Current commercial recommendations are to cool fruit to 18C, which limits postharvest handling options. Recent trials have confirmed that delayed or slowed cooling after harvest can reduce under skin browning. The defect may also be associated with physical injury to the skin during harvesting and packing. Irradiation is potentially an important disinfestation treatment for fruit fly in Australian mangoes. The 'B74' mango cultivar develops significant skin damage following irradiation, mainly due to discolouration of the cells surrounding the lenticels. Recent results confirmed that fruit harvested directly from the tree into trays without exposure to water or postharvest chemicals are not damaged by irradiation, while commercially harvested and packed fruit are damaged. Several major harvest and postharvest steps appear to increase lenticel sensitivity to irradiation. Further work is required to develop commercially acceptable protocols to facilitate 'Honey Gold' and 'B74' mango distribution and marketing.