10 resultados para Computer software
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The project renewed the Breedcow and Dynama software making it compatible with modern computer operating systems and platforms. Enhancements were also made to the linkages between the individual programs and their operation. The suite of programs is a critical component of the skill set required to make soundly based plans and production choices in the north Australian beef industry.
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
To remain competitive, many agricultural systems are now being run along business lines. Systems methodologies are being incorporated, and here evolutionary computation is a valuable tool for identifying more profitable or sustainable solutions. However, agricultural models typically pose some of the more challenging problems for optimisation. This chapter outlines these problems, and then presents a series of three case studies demonstrating how they can be overcome in practice. Firstly, increasingly complex models of Australian livestock enterprises show that evolutionary computation is the only viable optimisation method for these large and difficult problems. On-going research is taking a notably efficient and robust variant, differential evolution, out into real-world systems. Next, models of cropping systems in Australia demonstrate the challenge of dealing with competing objectives, namely maximising farm profit whilst minimising resource degradation. Pareto methods are used to illustrate this trade-off, and these results have proved to be most useful for farm managers in this industry. Finally, land-use planning in the Netherlands demonstrates the size and spatial complexity of real-world problems. Here, GIS-based optimisation techniques are integrated with Pareto methods, producing better solutions which were acceptable to the competing organizations. These three studies all show that evolutionary computation remains the only feasible method for the optimisation of large, complex agricultural problems. An extra benefit is that the resultant population of candidate solutions illustrates trade-offs, and this leads to more informed discussions and better education of the industry decision-makers.
Resumo:
Genetic mark–recapture requires efficient methods of uniquely identifying individuals. 'Shadows' (individuals with the same genotype at the selected loci) become more likely with increasing sample size, and bias harvest rate estimates. Finding loci is costly, but better loci reduce analysis costs and improve power. Optimal microsatellite panels minimize shadows, but panel design is a complex optimization process. locuseater and shadowboxer permit power and cost analysis of this process and automate some aspects, by simulating the entire experiment from panel design to harvest rate estimation.
Resumo:
APSIM-ORYZA is a new functionality developed in the APSIM framework to simulate rice production while addressing management issues such as fertilisation and transplanting, which are particularly important in Korean agriculture. To validate the model for Korean rice varieties and field conditions, the measured yields and flowering times from three field experiments conducted by the Gyeonggi Agricultural Research and Extension Services (GARES) in Korea were compared against the simulated outputs for different management practices and rice varieties. Simulated yields of early-, mid- and mid-to-late-maturing varieties of rice grown in a continuous rice cropping system from 1997 to 2004 showed close agreement with the measured data. Similar results were also found for yields simulated under seven levels of nitrogen application. When different transplanting times were modelled, simulated flowering times ranged from within 3 days of the measured values for the early-maturing varieties, to up to 9 days after the measured dates for the mid- and especially mid-to-late-maturing varieties. This was associated with highly variable simulated yields which correlated poorly with the measured data. This suggests the need to accurately calibrate the photoperiod sensitivity parameters of the model for the photoperiod-sensitive rice varieties in Korea.
Resumo:
Wilmot Senaratne, Bill Palmer and Bob Sutherst recently published their paper 'Applications of CLIMEX modelling leading to improved biological control' in Proceedings of the 16th Australian Weeds Conference. They looked at three examples where modern climate matching techniques using computer software produces decisions and results than might happen using previous techniques such as climadiagrams. Assessment of climatic suitability is important at various stages of a biological control project; from initial foreign exploration, to risk assessment in preparation for the release of a particular agent, through to selection of release sites that maximise the agent´s chances of initial establishment. It is now also necessary to predict potential future distributions of both target weeds and agents under climate change.
Resumo:
Forage budgeting, land condition monitoring and maintaining ground cover residuals are critical management practices for the long term sustainability of the northern grazing industry. The aim of this project is to do a preliminary investigation into industry need, feasibility and willingness to adopt a simple to use hand-held hardware device and compatible, integrated software applications that can be used in the paddock by producers, to assist in land condition monitoring and forage budgeting for better Grazing Land Management and to assist with compliance.
Resumo:
Collating old fertilizer trial data for development of a national database on crop responses.
Resumo:
Development of an internet based spatial data delivery and reporting system for the Australian Cotton Industry.