2 resultados para Complex number
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The identification of Diaporthe (anamorph Phomopsis) species associated with stem canker of sunflower (Helianthus annuus) in Australia was studied using morphology, DNA sequence analysis and pathology. Phylogenetic analysis revealed three clades that did not correspond with known taxa, and these are believed to represent novel species. Diaporthe gulyae sp. nov. is described for isolates that caused a severe stem canker, specifically pale brown to dark brown, irregularly shaped lesions centred at the stem nodes with pith deterioration and mid-stem lodging. This pathogenicity of D. gulyae was confirmed by satisfying Koch's Postulates. These symptoms are almost identical to those of sunflower stem canker caused by D. helianthi that can cause yield reductions of up to 40% in Europe and the USA, although it has not been found in Australia. We show that there has been broad misapplication of the name D. helianthi to many isolates of Diaporthe ( Phomopsis) found causing, or associated with, stem cankers on sunflower. In GenBank, a number of isolates had been identified as D. helianthi, which were accommodated in several clades by molecular phylogenetic analysis. Two less damaging species, D. kochmanii sp. nov. and D. kongii sp. nov., are also described from cankers on sunflower in Australia.
Resumo:
Key message: Evaluation of resistance toPyrenophora teresf.maculatain barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. Abstract: In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.