4 resultados para Common-factor restriction

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dry-season weight loss in grazing cattle in northern Australia has been attenuated using a number of strategies (Hunter and Vercoe, 1987, Sillence et al. 1993, Gazzola and Hunter, 1999). Furthermore, the potential to improve efficiency of feed utilisation (and thus, dry-season performance) in ruminants through conventional modulation of the insulin-like growth factor (IGF) axis (Oddy and Owens, 1997, Hill et al., 1999) and through immunomodulation of the IGF axis (Hill et al., 1998a,b) has been demonstrated. The present study investigated the use of a vaccine directed against IGFBP-1 in Brahman steers which underwent a period of nutritional restriction followed by a return to wet-season grazing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling of cultivar x trial effects for multienvironment trials (METs) within a mixed model framework is now common practice in many plant breeding programs. The factor analytic (FA) model is a parsimonious form used to approximate the fully unstructured form of the genetic variance-covariance matrix in the model for MET data. In this study, we demonstrate that the FA model is generally the model of best fit across a range of data sets taken from early generation trials in a breeding program. In addition, we demonstrate the superiority of the FA model in achieving the most common aim of METs, namely the selection of superior genotypes. Selection is achieved using best linear unbiased predictions (BLUPs) of cultivar effects at each environment, considered either individually or as a weighted average across environments. In practice, empirical BLUPs (E-BLUPs) of cultivar effects must be used instead of BLUPs since variance parameters in the model must be estimated rather than assumed known. While the optimal properties of minimum mean squared error of prediction (MSEP) and maximum correlation between true and predicted effects possessed by BLUPs do not hold for E-BLUPs, a simulation study shows that E-BLUPs perform well in terms of MSEP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we examined the photosynthetic responses of five common seagrass species from a typical mixed meadow in Torres Strait at a depth of 5–7 m using pulse amplitude modulated (PAM) fluorometry. The photosynthetic response of each species was measured every 2 h throughout a single daily light cycle from dawn (6 am) to dusk (6 pm). PAM fluorometry was used to generate rapid light curves from which measures of electron transport rate (ETRmax), photosynthetic efficiency (α), saturating irradiance (Ek) and light-adapted quantum yield (ΔF/F′m) were derived for each species. The amount of light absorbed by leaves (absorption factor) was also determined for each species. Similar diurnal patterns were recorded among species with 3–4 fold increases in maximal electron rate from dawn to midday and a maintenance of ETRmax in the afternoon that would allow an optimal use of low light by all species. Differences in photosynthetic responses to changes in the daily light regime were also evident with Syringodium isoetifolium showing the highest photosynthetic rates and saturating irradiances suggesting a competitive advantage over other species under conditions of high light. In contrast Halophila ovalis, Halophila decipiens and Halophila spinulosa were characterised by comparatively low photosynthetic rates and minimum light requirements (i.e. low Ek) typical of shade adaptation. The structural makeup of each species may explain the observed differences with large, structurally complex species such as Syringodium isoetifolium and Cymodocea serrulata showing high photosynthetic effciciencies (α) and therefore high-light-adapted traits (e.g. high ETRmax and Ek) compared with the smaller Halophila species positioned lower in the canopy. For the smaller Halophila species these shade-adapted traits are features that optimise their survival during low-light conditions. Knowledge of these characteristics and responses improves our understanding of the underlying causes of changes in seagrass biomass, growth and survival that occur when modifications in light quantity and quality arise from anthropogenic and climatic disturbances that commonly occur in Torres Strait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globalisation is set to have a major impact on world horticultural production and distribution of fruit and vegetables throughout the world. In contrast to developing countries such as China, production and consumption of fresh fruit and vegetables in most developed countries is relatively static. For developed countries, we are starting to see consolidation in the number of farms producing fruit and vegetables with falling or static prices and real farm incomes. Global supply chains are now dominated by a few large multi-national retailers supplied by preferred trans-national distribution companies. The major competitive advantages that are emerging are consistency of supply of high quality product over an extended season and the control of genetic resources and their marketing. To capture these new competitive advantages, new strategic analyses and planning processes must be implemented. In the past, strategic analyses and planning has been undertaken on an ad hoc basis without accurate global intelligence. In the future, working ‘on the supply chain’ will become equally, if not more important, than working ‘in the supply chain’. A revised approach to strategic planning, which encompasses and adjusts for the changes caused by globalisation, is urgently needed. A new 6-step strategic analyses process is described.