12 resultados para Coastline

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scomberomorus semifasciatus is an Australian endemic found in tropical, coastal waters from eastern to western Australia. Commercial and recreational exploitation is common and regulated by state-based authorities. This study used mitochondrial DNA sequence and microsatellite markers to elucidate the population structure of Scomberomorus semifasciatus collected from twelve, equidistant sampling locations. Samples (n=544) were genotyped with nine microsatellite loci, and 353 were sequenced for d-loop (384 bp) and ATP (800bp) mitochondrial DNA gene regions. Combined interpretation of microsatellite and mtDNA data identified four genetic stocks of S. semifasciatus: Western Australia, northwest coast of the Northern Territory, Gulf of Carpentaria and the east coast of Queensland. Connectivity among stocks across northern Australia from the Northern Territory to the east coast of Queensland was high, but in contrast, there was a clear genetic break between populations in Western Australia compared to the rest of northern Australia. This indicates a restriction to gene flow possibly associated with suboptimal habitat along the Kimberley coast (northwestern Australia). The appropriate scale of management for this species corresponds to the jurisdictions of the three Australian states, except that the Gulf of Carpentaria stock should be co-managed by authorities in Queensland and Northern Territory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite international protection of white sharks (Carcharodon carcharias), important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with six nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (FST = 0.142, p < 0.001), implying female natal philopatry. This concords with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited microsatellite markers (FST = 0.009, p <0.05), suggesting that males may also exhibit some degree of reproductive philopatry. Five sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal or migration resulting in breeding may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and below the threshold at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least one, possibly two orders of magnitude below our historical effective size estimates. Further population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail. Reference: Blower, D. C., Pandolfi, J. M., Gomez-Cabrera, M. del C., Bruce, B. D. & Ovenden, J. R. (In press - April 2012). Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes. Marine Ecology Progress Series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pond apple invades riparian and coastal environments with water acting as the main vector for dispersal. As seeds float and can reach the ocean, a seed tracking model driven by near surface ocean currents was used to develop maps of potential seed dispersal. Seeds were ‘released’ in the model from sites near the mouths of major North Queensland rivers. Most seeds reach land within three months of release, settling predominately on windward-facing locations. During calm and monsoonal conditions, seeds were generally swept in a southerly direction, however movement turns northward during south easterly trade winds. Seeds released in February from the Johnstone River were capable of being moved anywhere from 100 km north to 150 km south depending on prevailing conditions. Although wind driven currents are the primary mechanism influencing seed dispersal, tidal currents, the East Australian Current, and other factors such as coastline orientation, release location and time also play an important role in determining dispersal patterns. In extreme events such as tropical cyclone Justin in 1997, north east coast rivers could potentially transport seed over 1300 km to the Torres Strait, Papua New Guinea and beyond.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scombrid Scomberomorus semifasciatus is an important component of inshore fisheries in tropical Australia. Data on the parasite fauna of 593 fish from areas off northern and eastern Australia were examined for evidence of discrete fish populations. The parasites used were juveniles of Pterobothrium pearsoni, Callitetrarhynchus gracilis, Anisakis simplex (sensu latu) and Terranova sp. Tukey Kramer pairwise comparisons gave significant differences in the abundances of two or more parasites between fish from the east coast, the eastern Gulf of Carpentaria and the remainder of northern Australia. Multivariate analysis gave further evidence of differences and the results suggest that at least 4 populations or stocks of grey mackerel occur along the northern and eastern coastline of Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface losses of nitrogen from horticulture farms in coastal Queensland, Australia, may have the potential to eutrophy sensitive coastal marine habitats nearby. A case-study of the potential extent of such losses was investigated in a coastal macadamia plantation. Nitrogen losses were quantified in 5 consecutive runoff events during the 13-month study. Irrigation did not contribute to surface flows. Runoff was generated by storms at combined intensities and durations that were 20–40 mm/h for >9 min. These intensities and durations were within expected short-term (1 year) and long-term (up to 20 years) frequencies of rainfall in the study area. Surface flow volumes were 5.3 ± 1.1% of the episodic rainfall generated by such storms. Therefore, the largest part of each rainfall event was attributed to infiltration and drainage in this farm soil (Kandosol). The estimated annual loss of total nitrogen in runoff was 0.26 kg N/ha.year, representing a minimal loading of nitrogen in surface runoff when compared to other studies. The weighted average concentrations of total sediment nitrogen (TSN) and total dissolved nitrogen (TDN) generated in the farm runoff were 2.81 ± 0.77% N and 1.11 ± 0.27 mg N/L, respectively. These concentrations were considerably greater than ambient levels in an adjoining catchment waterway. Concentrations of TSN and TDN in the waterway were 0.11 ± 0.02% N and 0.50 ± 0.09 mg N/L, respectively. The steep concentration gradient of TSN and TDN between the farm runoff and the waterway demonstrated the occurrence of nutrient loading from the farming landscapes to the waterway. The TDN levels in the stream exceeded the current specified threshold of 0.2–0.3 mg N/L for eutrophication of such a waterway. Therefore, while the estimate of annual loading of N from runoff losses was comparatively low, it was evident that the stream catchment and associated agricultural land uses were already characterised by significant nitrogen loadings that pose eutrophication risks. The reported levels of nitrogen and the proximity of such waterways (8 km) to the coastline may have also have implications for the nearshore (oligotrophic) marine environment during periods of turbulent flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protection of coastal wetland environments is an important prerequisite to effective and sustainable inshore fisheries management and conservation of habitats for use by future generations. Mangroves, saltmarshes, seagrasses and non vegetated habitats directly support local and regional inshore and offshore fisheries through the provision of food, shelter, breeding and nursery grounds. As such, these wetland environments have significant economic value as well as their intrinsic aesthetic and ecological values. This report summarises the results of the mapping undertaken in the Central Queensland Coast from Sand Bay to Keppel Bay (hereafter referred to as the Study Area). The study was undertaken in order to: 1. document and map the coastal wetland communities along the Queensland coastline from Sand Bay (20.93°S, 149.04°E) to Keppel Bay (23.65°S, 151.07°E); 2. document levels of existing disturbance to and protection of the wetlands; 3. examine existing recreational and commercial fisheries in the region; and 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wetland resources of the Queensland coastline have been mapped as a baseline dataset for Marine Protected Area investigation and particularly Fish Habitat Area (FHA) declaration, Ramsar site nomination and continued monitoring of these important fish habitats. This report summarises the results of the mapping undertaken in the Bowen region from the East Coast of Cape Upstart (Abbot Bay) to Gloucester Island (encompassing Edgecumbe Bay). The study was undertaken in order to: 1. document and map the coastal wetland communities within the Bowen region; 2. document levels of existing disturbance to and protection of the wetlands; 3. examine existing recreational and commercial fisheries in the region; and 4. evaluate the significance of the coastal wetlands in the region. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1:100,000 coastal wetland vegetation mapping for Queensland including mangrove communities, saltpans and saline grasslands. Mapping taken from Landsat TM images with ground truthing. Additional metadata is available for details of techniques and accuracy for each section of coastline. Data Currency for each section of coast: NT border to Flinders River - 1995 SE Gulf of Carpentaria - 1987, 1988, 1991, 1992 Cape York Peninsula - 1986-88, 1991 Cape Trib to Bowling Green Bay - 1997-99 The Burdekin Region - 1991 The Bowen Region - 1994-95 The Whitsunday Region - 1997 Repulse Bay - 1989 Central Qld - 1995, 1997 The Curtis Coast Region - 1997 Round Hill Head to Tin Can Inlet - 1997 Moreton Region - 1995. Article Links: 1/ #1662. Queensland Coastal Wetland Resources: the Northern Territory Border to Flinders River. Project Report. Information Series QI00099. 2/ #1663. Queensland Coastal Wetland Resources: Sand Bay to Keppel Bay. Project Report. Information Series QI00100. 3/ #1664. Queensland Coastal Wetland Resources: Cape Tribulation to Bowling Green Bay. Project Report. Information Series QI01064. 4/ #1666. Coastal Wetlands Resources Investigation of the Burdekin Delta for declaration as fisheries reserves. Report to Ocean Rescue 2000. Project Report. 5/ #1667. Queensland Coastal Wetland Resource Investigation of the Bowen Region: Cape Upstart to Gloucester Island. Project Report. 6/ #1784. Resource Assessment of the Tidal Wetland Vegetation of Western Cape York Peninsula, North Queensland, Report to Ocean Rescue 2000. Project Report. 7/ #1785. Marine Vegetation of Cape York Peninsula. Cape York Peninsula Land Use Strategy. Project Report. 8/ #3544. Queensland Coastal Wetland Resources: The Whitsunday Region. Project Report.Information Series QI01065. 9/ #3545. Queensland Coastal Wetland Resources: Round Hill Head to Tin Can Inlet. Project Report. Information Series QI99081.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: This study investigated the use of stable δ13C and δ18O isotopes in the sagittal otolith carbonate of narrow-barred Spanish mackerel, Scomberomorus commerson, as indicators of population structure across Australia. Location: Samples were collected from 25 locations extending from the lower west coast of Western Australia (30°), across northern Australian waters, and to the east coast of Australia (18°) covering a coastline length of approximately 9500 km, including samples from Indonesia. Methods: The stable δ13C and δ18O isotopes in the sagittal otolith carbonate of S. commerson were analysed using standard mass spectrometric techniques. The isotope ratios across northern Australian subregions were subjected to an agglomerative hierarchical cluster analysis to define subregions. Isotope ratios within each of the subregions were compared to assess population structure across Australia. Results: Cluster analysis separated samples into four subregions: central Western Australia, north Western Australia, northern Australia and the Gulf of Carpentaria and eastern Australia. Isotope signatures for fish from a number of sampling sites from across Australia and Indonesia were significantly different, indicating population separation. No significant differences were found in otolith isotope ratios between sampling times (no temporal variation). Main conclusions: Significant differences in the isotopic signatures of S. commerson demonstrate that there is unlikely to be any substantial movement of fish among these spatially discrete adult assemblages. The lack of temporal variation among otolith isotope ratios indicates that S. commerson populations do not undergo longshore spatial shifts in distribution during their life history. The temporal persistence of spatially explicit stable isotopic signatures indicates that, at these spatial scales, the population units sampled comprise functionally distinct management units or separate ‘stocks’ for many of the purposes of fisheries management. The spatial subdivision evident among populations of S. commerson across northern and western Australia indicates that it may be advantageous to consider S. commerson population dynamics and fisheries management from a metapopulation perspective (at least at the regional level).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ulva is a common component of marine intertidal flora in Australia with many species frequently observed along the Queensland coastline. Three species of Ulva, U. lactuca, U. intestinalis and U. prolifera were found to naturally occur at the Bribie Island Research Centre (BIRC) in Southeast Queensland. Studies were undertaken to establish the most optimal conditions for growing Ulva in the BIRC laboratory. These tests were conducted in order to condition the algal material prior to the sporulation studies, offering more controlled material to assess treatment effects conclusively, and helping eliminate other potentially confounding environmental factors. Results showed that a stocking density of between 5-20 grams of Ulva per litre along with the addition of the soluble fertiliser Aquasol at a rate of 87 mg/L of seawater was ideal for achieving a desired doubling of growth per week. In the wild the formation of Ulva fragments occurs naturally in the ocean through wave and storm action. This breakage can trigger a survival response mechanism which stimulates the algae to form and release gametes. By chopping the tissue, this process could be artificially simulated in the laboratory and creating a simple and easy way to produce new individuals. Studies performed into inducing sporulation in Ulva through a combination of fragmentation and renewal of medium at BIRC showed that sporulation can be successfully induced in all three species of Ulva through these methods, however it was found to be to a degree that would not meet the demands of commercial production with on average a rate of only 33% achieved. While the current study did not find a method suitable for a commercial application the results presented here contribute to increasing our understanding about Ulva reproduction and set a platform for future work in to cultivating Ulva within Southeast Queensland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wetland resources of the Queensland coastline have been mapped by the Resource Condition and Trend Unit, Fisheries Group, Department of Primary Industries Queensland. This process is being undertaken in order to provide a baseline dataset for Fish Habitat Area (FHA) declaration, Ramsar site nomination and continued monitoring of these important fish habitats. This report summarises the results of the mapping undertaken from Round Hill Head to Tin Can Inlet. The study was undertaken in order to: 1. document and map the coastal wetland communities from Round Hill Head (24°S) to Tin Can Inlet (26°S); 2. document levels of existing disturbance to and protection of the wetlands; 3. examine existing recreational and commercial fisheries in the region; and 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species.