28 resultados para Coastal zones management
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Defining goals and objectives is a critical component of adaptive management of natural resources because they provide the basis on which management strategies can be designed and evaluated. The aims of this study are: (i) to apply and test a collaborative method to elicit goals and objectives for inshore fisheries and biodiversity in the coastal zone of a regional city in Australia; (ii) to understand the relative importance of management objectives for different community members and stakeholders; and (iii) to understand how diverse perceptions about the importance of management objectives can be used to support multiple-use management in Australia’s iconic Great Barrier Reef. Management goals and objectives were elicited and weighted using the following steps: (i) literature review of management objectives, (ii) development of a hierarchy tree of objectives, and (iii) ranking of management objectives using survey methods. The overarching goals identified by the community group were to: (1) protect and restore inshore environmental assets; (2) improve governance systems; and (3) improve regional (socio-economic) well-being. Interestingly, these goals differ slightly from the usual triple-bottom line objectives (environmental, social and economic) often found in the literature. The objectives were ranked using the Analytical Hierarchical Process, where a total of 141 respondents from industry, government agencies, and community from across Queensland State undertook the survey. The environment goal received the highest scores, followed by governance and lastly well-being. The approach to elicit and rank goals and objectives developed in this study can be used to effectively support coastal resource management by providing opportunities for local communities to participate in the setting of regional objectives.
Resumo:
Defining goals and objectives is a critical component of adaptive management of natural resources because they provide the basis on which management strategies can be designed and evaluated. The aims of this study are: (i) to apply and test a collaborative method to elicit goals and objectives for inshore fisheries and biodiversity in the coastal zone of a regional city in Australia; (ii) to understand the relative importance of management objectives for different community members and stakeholders; and (iii) to understand how diverse perceptions about the importance of management objectives can be used to support multiple-use management in Australia’s iconic Great Barrier Reef. Management goals and objectives were elicited and weighted using the following steps: (i) literature review of management objectives, (ii) development of a hierarchy tree of objectives, and (iii) ranking of management objectives using survey methods. The overarching goals identified by the community group were to: (1) protect and restore inshore environmental assets; (2) improve governance systems; and (3) improve regional (socio-economic) well-being. Interestingly, these goals differ slightly from the usual triple-bottom line objectives (environmental, social and economic) often found in the literature. The objectives were ranked using the Analytical Hierarchical Process, where a total of 141 respondents from industry, government agencies, and community from across Queensland State undertook the survey. The environment goal received the highest scores, followed by governance and lastly well-being. The approach to elicit and rank goals and objectives developed in this study can be used to effectively support coastal resource management by providing opportunities for local communities to participate in the setting of regional objectives.
Resumo:
A wide range of goals and objectives have to be taken into account in natural resources management. Defining these objectives in operational terms, including dimensions such as sustainability, productivity, and equity, is by no means easy, especially if they must capture the diversity of community and stakeholder values. This is especially true in the coastal zone where land activities affect regional marine ecosystems. In this study, the aim was firstly to identify and hierarchically organise the goals and objectives for coastal systems, as defined by local stakeholders. Two case study areas are used within the Great Barrier Reef region being Mackay and Bowen–Burdekin. Secondly, the aim was to identify similarities between the case study results and thus develop a generic set of goals to be used as a starting point in other coastal communities. Results show that overarching high-level goals have nested sub-goals that contain a set of more detailed regional objectives. The similarities in high-level environmental, governance, and socio-economic goals suggest that regionally specific objectives can be developed based on a generic set of goals. The prominence of governance objectives reflects local stakeholder perceptions that current coastal zone management is not achieving the outcomes they feel important and that there is a need for increased community engagement and co-management. More importantly, it raises the question of how to make issues relevant for the local community and entice participation in the local management of public resources to achieve sustainable environmental, social, and economic management outcomes. © 2015 Springer-Verlag Berlin Heidelberg
Resumo:
Stakeholder engagement is important for successful management of natural resources, both to make effective decisions and to obtain support. However, in the context of coastal management, questions remain unanswered on how to effectively link decisions made at the catchment level with objectives for marine biodiversity and fisheries productivity. Moreover, there is much uncertainty on how to best elicit community input in a rigorous manner that supports management decisions. A decision support process is described that uses the adaptive management loop as its basis to elicit management objectives, priorities and management options using two case studies in the Great Barrier Reef, Australia. The approach described is then generalised for international interest. A hierarchical engagement model of local stakeholders, regional and senior managers is used. The result is a semi-quantitative generic elicitation framework that ultimately provides a prioritised list of management options in the context of clearly articulated management objectives that has widespread application for coastal communities worldwide. The case studies show that demand for local input and regional management is high, but local influences affect the relative success of both engagement processes and uptake by managers. Differences between case study outcomes highlight the importance of discussing objectives prior to suggesting management actions, and avoiding or minimising conflicts at the early stages of the process. Strong contributors to success are a) the provision of local information to the community group, and b) the early inclusion of senior managers and influencers in the group to ensure the intellectual and time investment is not compromised at the final stages of the process. The project has uncovered a conundrum in the significant gap between the way managers perceive their management actions and outcomes, and community's perception of the effectiveness (and wisdom) of these same management actions.
Resumo:
Stakeholder engagement is important for successful management of natural resources, both to make effective decisions and to obtain support. However, in the context of coastal management, questions remain unanswered on how to effectively link decisions made at the catchment level with objectives for marine biodiversity and fisheries productivity. Moreover, there is much uncertainty on how to best elicit community input in a rigorous manner that supports management decisions. A decision support process is described that uses the adaptive management loop as its basis to elicit management objectives, priorities and management options using two case studies in the Great Barrier Reef, Australia. The approach described is then generalised for international interest. A hierarchical engagement model of local stakeholders, regional and senior managers is used. The result is a semi-quantitative generic elicitation framework that ultimately provides a prioritised list of management options in the context of clearly articulated management objectives that has widespread application for coastal communities worldwide. The case studies show that demand for local input and regional management is high, but local influences affect the relative success of both engagement processes and uptake by managers. Differences between case study outcomes highlight the importance of discussing objectives prior to suggesting management actions, and avoiding or minimising conflicts at the early stages of the process. Strong contributors to success are a) the provision of local information to the community group, and b) the early inclusion of senior managers and influencers in the group to ensure the intellectual and time investment is not compromised at the final stages of the process. The project has uncovered a conundrum in the significant gap between the way managers perceive their management actions and outcomes, and community's perception of the effectiveness (and wisdom) of these same management actions.
Resumo:
Runoff and sediment loss from forest roads were monitored for a two-year period in a Pinus plantation in southeast Queensland. Two classes of road were investigated: a gravelled road, which is used as a primary daily haulage route for the logging area, and an ungravelled road, which provides the main access route for individual logging compartments and is intensively used as a haulage route only during the harvest of these areas (approximately every 30 years). Both roads were subjected to routine traffic loads and maintenance during the study. Surface runoff in response to natural rainfall was measured and samples taken for the determination of sediment and nutrient (total nitrogen, total phosphorus, dissolved organic carbon and total iron) loads from each road. Results revealed that the mean runoff coefficient (runoff depth/rainfall depth) was consistently higher from the gravelled road plot with 0.57, as compared to the ungravelled road with 0.38. Total sediment loss over the two-year period was greatest from the gravelled road plot at 5.7 t km−1 compared to the ungravelled road plot with 3.9 t km−1. Suspended solids contributed 86% of the total sediment loss from the gravelled road, and 72% from the ungravelled road over the two years. Nitrogen loads from the two roads were both relatively constant throughout the study, and averaged 5.2 and 2.9 kg km−1 from the gravelled and ungravelled road, respectively. Mean annual phosphorus loads were 0.6 kg km−1 from the gravelled road and 0.2 kg km−1 from the ungravelled road. Organic carbon and total iron loads increased in the second year of the study, which was a much wetter year, and are thought to reflect the breakdown of organic matter in roadside drains and increased sediment generation, respectively. When road and drain maintenance (grading) was performed runoff and sediment loss were increased from both road types. Additionally, the breakdown of the gravel road base due to high traffic intensity during wet conditions resulted in the formation of deep (10 cm) ruts which increased erosion. The Water Erosion Prediction Project (WEPP):Road model was used to compare predicted to observed runoff and sediment loss from the two road classes investigated. For individual rainfall events, WEPP:Road predicted output showed strong agreement with observed values of runoff and sediment loss. WEPP:Road predictions for annual sediment loss from the entire forestry road network in the study area also showed reasonable agreement with the extrapolated observed values.
Resumo:
Rainfall simulation experiments were carried out to measure runoff and soil water fluxes of suspended solids, total nitrogen, total phosphorus, dissolved organic carbon and total iron from sites in Pinus plantations on the coastal lowlands of south-eastern Queensland subjected to various operations (treatments). The operations investigated were cultivated and nil-cultivated site preparation, fertilised site preparation, clearfall harvesting and prescribed burning; these treatments were compared with an 8-y-old established plantation. Flow-weighted mean concentrations of total nitrogen and total phosphorus in surface runoff from the cultivated and nil-cultivated site-preparation, clearfall harvest, prescribed burning and 8-y-old established plantation treatments were very similar. However, both the soil water and the runoff from the fertilised site preparation treatment contained more nitrogen (N) and phosphorus (P) than the other treatments - with 3.10 mg N L-1 and 4.32 mg P L-1 (4 and 20 times more) in the runoff. Dissolved organic carbon concentrations in runoff from the nil-cultivated site-preparation and prescribed burn treatments were elevated. Iron concentrations were highest in runoff from the nil-cultivated site-preparation and 8-y-old established plantation treatments. Concentrations of suspended solids in runoff were higher from cultivated site preparation and prescribed burn treatments, and reflect the great disturbance of surface soil at these sites. The concentrations of all analytes were highest in initial runoff from plots, and generally decreased with time. Total nitrogen (mean 7.28, range 0.11-13.27 mg L-1) and total phosphorus (mean 11.60, range 0.06-83.99 mg L-1) concentrations in soil water were between 2 and 10 times greater than in surface runoff, which highlights the potential for nutrient fluxes in interflow (i.e. in the soil above the water table) through the general plantation area. Implications in regard to forest management are discussed, along with results of larger catchment-scale studies.
Resumo:
Data on seasonal population abundance of Bemisia tabaci biotype B (silverleaf whitefly (SLW)) in Australian cotton fields collected over four consecutive growing seasons (2002/2003-2005/2006) were used to develop and validate a multiple-threshold-based management and sampling plan. Non-linear growth trajectories estimated from the field sampling data were used as benchmarks to classify adult SLW field populations into six density-based management zones with associated control recommendations in the context of peak flowering and open boll crop growth stages. Control options based on application of insect growth regulators (IGRs) are recommended for high-density populations (>2 adults/leaf) whereas conventional (non-IGR) products are recommended for the control of low to moderate population densities. A computerised re-sampling program was used to develop and test a binomial sampling plan. Binomial models with thresholds of T=1, 2 and 3 adults/leaf were tested using the field abundance data. A binomial plan based on a tally threshold of T=2 adults/leaf and a minimum sample of 20 leaves at nodes 3, 4 or 5 below the terminal is recommended as the most parsimonious and practical sampling protocol for Australian cotton fields. A decision support guide with management zone boundaries expressed as binomial counts and control options appropriate for various SLW density situations is presented. Appropriate use of chemical insecticides and tactics for successful field control of whiteflies are discussed.
Resumo:
When tropical cyclone Larry crossed the Queensland coast on 20 March 2006, commercial, recreational and naval vessels in the port of Cairns, 60 km north of the eye of the cyclone and others closer to the eye, were protected from the destructive winds by sheltering in deep mangrove creeks in Trinity Inlet and off other coastal rivers. The Trinity Inlet mangroves are protected under the comprehensive multi-use Trinity Inlet Management Plan, agreed by the local and state government agencies (Cairns City Council, the Cairns Port Authority and the Queensland Government). Using this Australian example and one from the town of Palompon in Leyte province, central Philippines, we show how long-term mangrove habitat protection resulting from well-conceived coastal planning can deliver important economic and infrastructure benefits.
Resumo:
The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.
Resumo:
The main weeds and weed management practices undertaken in broad acre dryland cropping areas of north-eastern Australia have been identified. The information was collected in a comprehensive postal survey of both growers and agronomists from Dubbo in New South Wales (NSW) through to Clermont in central Queensland, where 237 surveys were returned. A very diverse weed flora of 105 weeds from 91 genera was identified for the three cropping zones within the region (central Queensland, southern Queensland and northern NSW). Twenty-three weeds were common to all cropping zones. The major common weeds were Sonchus oleraceus, Rapistrum rugosum, Echinochloa spp. and Urochloa panicoides. The main weeds were identified for both summer and winter fallows, and sorghum, wheat and chickpea crops for each of the zones, with some commonality as well as floral uniqueness recorded. More genera were recorded in the fallows than in crops, and those in summer fallows exceeded the number in winter. Across the region, weed management relied heavily on herbicides. In fallows, glyphosate and mixes with glyphosate were very common, although the importance of the glyphosate mix partner differed among the cropping zones. Use and importance of pre-emergence herbicides in-crop varied considerably among the zones. In wheat, more graminicides were used in northern NSW than in southern Queensland, and virtually none were used in central Queensland, reflecting the differences in winter grass weed flora across the region. Atrazine was the major herbicide used in sorghum, although metolachlor was also used predominantly in northern NSW. Fallow and inter-row cultivation were used more often in the southern areas of the region. Grazing of fallows was more prominent in northern NSW. High crop seeding rates were not commonly recorded indicating that growers are not using crop competition as a tool for weed management. Although many management practices were recorded overall, few growers were using integrated weed management, and herbicide resistance has been and continues to be an issue for the region.
Resumo:
Protection of coastal wetland environments is an important prerequisite to effective and sustainable fisheries management and conservation of habitats for the use of future generations. Mangroves, saltmarshes and seagrasses directly support local and offshore fisheries through the provision of food, shelter, breeding and nursery grounds. As such, these vegetated wetland environments along with sandbars, mudflats, rocky foreshores and reefs have significant economic value as well as their intrinsic aesthetic and ecological values. This report summarises the results of the mapping undertaken in the Gulf of Carpentaria Region from the Queensland/Northern Territory border eastwards to the western bank of the Flinders River (hereafter called the Gulf Study Area). The study was undertaken in order to: 1. document and map coastal wetlands of the Gulf Study Area; 2. document levels of existing disturbance to and protection of these wetlands; 3. examine existing recreational, indigenous and commercial fisheries of the region; 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species for future FHA/Marine Protected Area (MPA) declaration. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]
Resumo:
Protection of coastal wetland environments is an important prerequisite to effective and sustainable inshore fisheries management and conservation of habitats for use by future generations. Mangroves, saltmarshes, seagrasses and non vegetated habitats directly support local and regional inshore and offshore fisheries through the provision of food, shelter, breeding and nursery grounds. As such, these wetland environments have significant economic value as well as their intrinsic aesthetic and ecological values. This report summarises the results of the mapping undertaken in the Central Queensland Coast from Sand Bay to Keppel Bay (hereafter referred to as the Study Area). The study was undertaken in order to: 1. document and map the coastal wetland communities along the Queensland coastline from Sand Bay (20.93°S, 149.04°E) to Keppel Bay (23.65°S, 151.07°E); 2. document levels of existing disturbance to and protection of the wetlands; 3. examine existing recreational and commercial fisheries in the region; and 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]
Resumo:
This report provides key resource data for the ongoing assessment of the requirement for additional Marine Protected Areas (e.g. FHAs under the Queensland Fisheries Act 1994) in regions of high fish habitat value in northern Queensland from Cape Tribulation to Bowling Green Bay (hereafter referred to as the Study Area). The study also provides baseline information on the coastal wetlands within this Study Area for consideration in the Ramsar site nomination process. The Study Area extends from Cape Tribulation (16o 6’S, 145o 24’E) to Bowling Green Bay (19o 30’S, 147o 24’E) in tropical north Queensland. The project aimed to: 1. document and map the coastal wetland communities of the Study Area; 2. document levels of existing disturbance to and protection of the wetlands; 3. examine existing recreational, indigenous and commercial fisheries resources in the region; 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species for future FHA/MPA declaration. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]