40 resultados para Clonal plants
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Clonal forestry is the approach used for deployment of Pinus elliottii x P. caribaea hybrids in Queensland, Australia. Clonal forestry relies on the ability to maintain juvenility of stock plants while selections are made in field tests, so that genetic gains are not eroded by the effects of stock plant maturation. Two parallel approaches are employed in Queensland to maintain juvenility of clonal material. Firstly, the ortet and several ramets of each clone are maintained as archive hedges <20-cm height for the duration of field tests. Secondly, shoots from archive hedges are stored in tissue culture at low temperature and low irradiance to slow growth and slow maturation. Once the best clones have been identified, production hedges are derived from both archive hedges and tissue culture shoots. About 6 million rooted cuttings are produced annually, representing almost the entire planting program of Pinus in subtropical Queensland.
Resumo:
The hypothesis that contaminant plants growing amongst chickpea serve as Helicoverpa sinks by diverting oviposition pressure away from the main crop was tested under field conditions. Gain (recruitment) and loss (presumed mortality) of juvenile stages of Helicoverpa spp. on contaminant faba bean and wheat plants growing in chickpea plots were quantified on a daily basis over a 12-d period. The possibility of posteclosion movement of larvae from the contaminants to the surrounding chickpea crop was examined. Estimated total loss of the census population varied from 80 to 84% across plots and rows. The loss of brown eggs (40–47%) contributed most to the overall loss estimate, followed by loss of white eggs (27–35%) and larvae (6–9%). The cumulative number of individuals entering the white and brown egg and larval stages over the census period ranged from 15 to 58, 10–48 and 1–6 per m row, respectively. The corresponding estimates of mean stage-specific loss, expressed as a percentage of individuals entering the stage, ranged from 52 to 57% for white eggs, 87–108% for brown eggs and 71–87% for first-instar larvae. Mean larval density on chickpea plants in close proximity to the contaminant plants did not exceed the baseline larval density on chickpea further away from the contaminants across rows and plots. The results support the hypothesis that contaminant plants in chickpea plots serve as Helicoverpa sinks by diverting egg pressure from the main crop and elevating mortality of juvenile stages. Deliberate contamination of chickpea crops with other plant species merits further investigation as a cultural pest management strategy for Helicoverpa spp.
Resumo:
Recolonisation and succession in a multi-species tropical seagrass meadow was examined by creating gaps (50×50 cm) in the meadow and manipulating the supply of sexual and asexual propagules. Measurements of leaf shoot density and estimates of above-ground biomass were conducted monthly to measure recovery of gaps between September 1995 and November 1997. Measurements of the seeds stored in the sediment (seed bank) and horizontal rhizome growth of colonising species were also conducted to determine their role in the recovery process. Asexual colonisation through horizontal rhizome growth from the surrounding meadow was the main mechanism for colonisation of gaps created in the meadow. The seed bank played no role in recolonisation of cleared plots. Total shoot density and above-ground biomass (all species pooled) of cleared plots recovered asexually to the level of the undisturbed controls in 10 and 7 months, respectively. There was some sexual recruitment into cleared plots where asexual colonisation was prevented but seagrass abundance (shoot density and biomass) did not reach the level of unmanipulated controls. Seagrass species did not appear to form seed banks despite some species being capable of producing long-lived seeds. The species composition of cleared plots remained different to the undisturbed controls throughout the 26-month experiment. Syringodium isoetifolium was a rapid asexual coloniser of disturbed plots and remained at higher abundances than in the control treatments for the duration of the study. S. isoetifolium had the fastest horizontal rhizome growth of species asexually colonising cleared plots (6.9 mm day−1). Halophila ovalis was the most successful sexual coloniser but was displaced by asexually colonising species. H. ovalis was the only species observed to produce fruits during the study. Small disturbances in the meadow led to long-term (>2 years) changes in community composition. This study demonstrated that succession in tropical seagrass communities was not a deterministic process. Variations in recovery observed for different tropical seagrass communities highlighted the importance of understanding life history characteristics of species within individual communities to effectively predict their response to disturbance. A reproductive strategy involving clonal growth and production of long-lived, locally dispersed seeds is suggested which may provide an evolutionary advantage to plants growing in tropical environments subject to temporally unpredictable major disturbances such as cyclones
Resumo:
Peanut (Arachis hypogaea L.) lines exhibiting high levels of resistance to peanut stripe virus (PStV) were obtained following microprojectile bombardment of embryogenic callus derived from mature seeds. Fertile plants of the commercial cultivars Gajah and NC7 were regenerated following co-bombardmentwith the hygromycin resistance gene and one of two forms of the PStV coat protein (CP) gene, an untranslatable, full length sequence (CP2) or a translatable gene encoding a CP with an N-terminal truncation (CP4). High level resistance to PStV was observed for both transgenes when plants were challenged with the homologous virus isolate. The mechanism of resistance appears to be RNA-mediated, since plants carrying either the untranslatable CP2 or CP4 had no detectable protein expression, but were resistant or immune (no virus replication). Furthermore, highly resistant, but not susceptible CP2 T0 plants contained transgene-specific small RNAs. These plants now provide important germplasm for peanut breeding, particularly in countries where PStV is endemic and poses a major constraint to peanut production.
Resumo:
When investigating strategies for Helicoverpa armigera (Hubner) control, it is important to understand oviposition behaviour. Cotton (Gossypium hirsutum) was sown into standing wheat (Triticum astivum L.) stubble in a closed arena to investigate the effect of stubble on H. armigera moth behaviour and oviposition. Infrared cameras were used to track moths and determine whether stubble acted as a physical barrier or provided camouflage to cotton plants, thereby reducing oviposition. Searching activity was observed to peak shortly before dawn (03:00 and 04:00 h) and remained high until just after dawn (4 h window). Moths spent more time resting on cotton plants than spiralling above them, and the least time flying across the arena. While female moths spent more time searching for cotton plants growing in wheat stubble, the difference in oviposition was not significant. As similar numbers of eggs were laid on cotton plants with stubble (3.5/plant SE +/- 0.87) and without stubble (2.5/plant SE +/- 0.91), wheat stubble does not appear to provide camouflage to cotton plants. There was no significant difference in the location of eggs deposited on cotton plants with and without stubble, although more eggs were laid on the tops of cotton leaves in wheat stubble. As the spatial and temporal distribution of eggs laid on the cotton plant is a crucial component of population stability, eggs laid on the upper side of leaves on cotton plants may be more prone to fatalities caused by environmental factors such as wind and rain. Therefore, although stubble did not influence the number of eggs laid, it did affect their distribution on the plant, which may result in increased mortality of eggs on cotton plants sown into standing wheat stubble.
Resumo:
Brassicaceae plants have the potential as part of an integrated approach to replace fumigant nematicides, providing the biofumigation response following their incorporation is not offset by reproduction of plant-parasitic nematodes on their roots. Forty-three Brassicaceae cultivars were screened in a pot trial for their ability to reduce reproduction of three root-knot nematode isolates from north Queensland, Australia: M. arenaria (NQ1), M. javanica (NQ2) and M. arenaria race 2 (NQ5/7). No cultivar was found to consistently reduce nematode reproduction relative to forage sorghum, the current industry standard, although a commercial fodder radish (Raphanus sativus) and a white mustard (Sinapis alba) line were consistently as resistant to the formation of galls as forage sorghum. A second pot trial screened five commercially available Brassicaceae cultivars, selected for their biofumigation potential, for resistance to two nematode species, M. javanica (NQ2) and M. arenaria (NQ5/7). The fodder radish cv. Weedcheck, was found to be as resistant as forage sorghum to nematode reproduction. A multivariate cluster analysis using the resistance measurements, gall index, nematode number per g of root and multiplication for two nematode species (NQ2 and NQ5/7) confirmed the similarity in resistance between the radish cultivar and forage sorghum. A field trial confirmed the resistance of the fodder radish cv. Weedcheck, with a similar reduction in the number of Meloidogyne spp. juveniles recovered from the roots 8 weeks after planting. The use of fodder radish cultivars as biofumigation crops to manage root-knot nematodes in tropical vegetable production systems deserves further investigation.
Resumo:
An important question in the host-finding behaviour of a polyphagous insect is whether the insect recognizes a suite or template of chemicals that are common to many plants? To answer this question, headspace volatiles of a subset of commonly used host plants (pigeon pea, tobacco, cotton and bean) and nonhost plants (lantana and oleander) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) are screened by gas chromatography (GC) linked to a mated female H. armigera electroantennograph (EAG). In the present study, pigeon pea is postulated to be a primary host plant of the insect, for comparison of the EAG responses across the test plants. EAG responses for pigeon pea volatiles are also compared between females of different physiological status (virgin and mated females) and the sexes. Eight electrophysiologically active compounds in pigeon pea headspace are identified in relatively high concentrations using GC linked to mass spectrometry (GC-MS). These comprised three green leaf volatiles [(2E)-hexenal, (3Z)-hexenylacetate and (3Z)-hexenyl-2-methylbutyrate] and five monoterpenes (α-pinene, β-myrcene, limonene, E-β-ocimene and linalool). Other tested host plants have a smaller subset of these electrophysiologically active compounds and even the nonhost plants contain some of these compounds, all at relatively lower concentrations than pigeon pea. The physiological status or sex of the moths has no effect on the responses for these identified compounds. The present study demonstrates how some host plants can be primary targets for moths that are searching for hosts whereas the other host plants are incidental or secondary targets.
Resumo:
Batches of glasshouse-grown flowering sorghum plants were placed in circular plots for 24 h at two field sites in southeast Queensland, Australia on 38 occasions in 2003 and 2004, to trap aerial inoculum of Claviceps africana. Plants were located 20-200 m from the centre of the plots. Batches of sorghum plants with secondary conidia of C. africana on inoculated spikelets were placed at the centre of each plot on some dates as a local point source of inoculum. Plants exposed to field inoculum were returned to a glasshouse, incubated at near-100% relative humidity for 48 h and then at ambient relative humidity for another week before counting infected spikelets to estimate pathogen dispersal. Three times as many spikelets became infected when inoculum was present within 200 m of trap plants, but infected spikelets did not decline with increasing distance from local source within the 200 m. Spikelets also became infected on all 10 dates when plants were exposed without a local source of infected plants, indicating that infection can occur from conidia surviving in the atmosphere. In 2005, when trap plants were placed at 14 locations along a 280 km route, infected spikelets diminished with increasing distance from sorghum paddocks and infection was sporadic for distances over 1 km. Multiple regression analysis showed significant influence of moisture related weather variables on inoculum dispersal. Results suggest that sanitation measures can help reduce ergot severity at the local level, but sustainable management will require better understanding of long-distance dispersal of C. africana inoculum.
Resumo:
Light interception is a major factor influencing plant development and biomass production. Several methods have been proposed to determine this variable, but its calculation remains difficult in artificial environments with heterogeneous light. We propose a method that uses 3D virtual plant modelling and directional light characterisation to estimate light interception in highly heterogeneous light environments such as growth chambers and glasshouses. Intercepted light was estimated by coupling an architectural model and a light model for different genotypes of the rosette species Arabidopsis thaliana (L.) Heynh and a sunflower crop. The model was applied to plants of contrasting architectures, cultivated in isolation or in canopy, in natural or artificial environments, and under contrasting light conditions. The model gave satisfactory results when compared with observed data and enabled calculation of light interception in situations where direct measurements or classical methods were inefficient, such as young crops, isolated plants or artificial conditions. Furthermore, the model revealed that A. thaliana increased its light interception efficiency when shaded. To conclude, the method can be used to calculate intercepted light at organ, plant and plot levels, in natural and artificial environments, and should be useful in the investigation of genotype-environment interactions for plant architecture and light interception efficiency. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.
Resumo:
Polioencephalomalacia was diagnosed histologically in cattle from two herds on the Darling Downs, Queensland, during July-August 2007. In the first incident, 8 of 20 18-month-old Aberdeen Angus steers died while grazing pastures comprising 60% Sisymbrium irio (London rocket) and 40% Capsella bursapastoris (shepherd's purse). In the second incident, 2 of 150 mixed-breed adult cattle died, and another was successfully treated with thiamine, while grazing a pasture comprising almost 100% Raphanus raphanistrum (wild radish). Affected cattle were either found dead or comatose or were seen apparently blind and head-pressing in some cases. For both incidents, plant and water assays were used to calculate the total dietary sulfur content in dry matter as 0.62% and 1.01% respectively, both exceeding the recommended 0.5% for cattle eating more than 40% forage. Blood and tissue assays for lead were negative in both cases. No access to thiaminase, concentrated sodium ion or extrinsic hydrogen sulfide sources were identified in either incident. Below-median late summer and autumn rainfall followed by above-median unseasonal winter rainfall promoted weed growth at the expense of wholesome pasture species before these incidents.
Resumo:
We investigated whether plasticity in growth responses to nutrients could predict invasive potential in aquatic plants by measuring the effects of nutrients on growth of eight non-invasive native and six invasive exotic aquatic plant species. Nutrients were applied at two levels, approximating those found in urbanized and relatively undisturbed catchments, respectively. To identify systematic differences between invasive and non-invasive species, we compared the growth responses (total biomass, root:shoot allocation, and photosynthetic surface area) of native species with those of related invasive species after 13 weeks growth. The results were used to seek evidence of invasive potential among four recently naturalized species. There was evidence that invasive species tend to accumulate more biomass than native species (P = 0.0788). Root:shoot allocation did not differ between native and invasive plant species, nor was allocation affected by nutrient addition. However, the photosynthetic surface area of invasive species tended to increase with nutrients, whereas it did not among native species (P = 0.0658). Of the four recently naturalized species, Hydrocleys nymphoides showed the same nutrient-related plasticity in photosynthetic area displayed by known invasive species. Cyperus papyrus showed a strong reduction in photosynthetic area with increased nutrients. H. nymphoides and C. papyrus also accumulated more biomass than their native relatives. H. nymphoides possesses both of the traits we found to be associated with invasiveness, and should thus be regarded as likely to be invasive.
Resumo:
Aim: To develop a surveillance support model that enables prediction of areas susceptible to invasion, comparative analysis of surveillance methods and intensity and assessment of eradication feasibility. To apply the model to identify surveillance protocols for generalized invasion scenarios and for evaluating surveillance and control for a context-specific plant invasion. Location: Australia. Methods: We integrate a spatially explicit simulation model, including plant demography and dispersal vectors, within a Geographical Information System. We use the model to identify effective surveillance protocols using simulations of generalized plant life-forms spreading via different dispersal mechanisms in real landscapes. We then parameterize the surveillance support model for Chilean needle grass [CNG; Nassella neesiana (Trin. & Rupr.) Barkworth], a highly invasive tussock grass, which is an eradication target in south-eastern Queensland, Australia. Results: General surveillance protocols that can guide rapid response surveillance were identified; suitable habitat that is susceptible to invasion through particular dispersal syndromes should be targeted for surveillance using an adaptive seek-and-destroy method. The search radius of the adaptive method should be based on maximum expected dispersal distances. Protocols were used to define a surveillance strategy for CNG, but simulations indicated that despite effective and targeted surveillance, eradication is implausible at current intensities. Main conclusions: Several important surveillance protocols emerged and simulations indicated that effectiveness can be increased if they are followed in rapid response surveillance. If sufficient data are available, the surveillance support model should be parameterized to target areas susceptible to invasion and determine whether surveillance is effective and eradication is feasible. We discovered that for CNG, regardless of a carefully designed surveillance strategy, eradication is implausible at current intensities of surveillance and control and these efforts should be doubled if they are to be successful. This is crucial information in the face of environmentally and economically damaging invasive species and large, expensive and potentially ineffective control programmes.
Resumo:
Fiji leaf gall (FLG) caused by Sugarcane Fiji disease virus (SCFDV) is transmitted by the planthopper Perkinsiella saccharicida. FLG is managed through the identification and exploitation of plant resistance. The glasshouse-based resistance screening produced inconsistent transmission results and the factors responsible for that are not known. A series of glasshouse trials conducted over a 2-year period was compared to identify the factors responsible for the erratic transmission results. SCFDV transmission was greater when the virus was acquired by the vector from a cultivar that was susceptible to the virus than when the virus was acquired from a resistant cultivar. Virus acquisition by the vector was also greater when the vector was exposed to the susceptible cultivars than when exposed to the resistant cultivar. Results suggest that the variation in transmission levels is due to variation in susceptibility of sugarcane cultivars to SCFDV used for virus acquisition by the vector.
Resumo:
The membracid Aconophora compressa Walker, a biological control agent released in 1995 to control Lantana camara (Verbenaceae) in Australia, has since been collected on several nontarget plant species. Our survey suggests that sustained populations of A. compressa are found only on the introduced nontarget ornamental Citharexylum spinosum (Verbenaceae) and the target weed L. camara. It is found on other nontarget plant species only when populations on C. spinosum and L. camara are high, suggesting that the presence of populations on nontarget species may be a spill-over effect. Some of the incidence and abundance on nontarget plants could have been anticipated from host specificity studies done on this agent before release, whereas others could not. This raises important issues about predicting risks posed by weed biological control agents and the need for long-term postintroduction monitoring on nontarget species.
Resumo:
Invasive plants are regarded as a major threat to biodiversity worldwide. Yet, in some cases, invasive plants now perform important ecological functions. For example, fleshy-fruited invasive plants provide food that supports indigenous frugivore populations. How can the disparate goals of conservation versus invasive weed control be managed? We suggest using the fruit characteristics of the invasive plant to select replacement indigenous plants that are functionally similar from the perspective of frugivores. These could provide replacement food resources at sites where plants with these characteristics are part of the goal plant community and where such plants would not otherwise regenerate. Replacement plants could also redirect seed dispersal processes to favour indigenous, rather than invasive, plant species. We investigated the utility of this approach by ranking all indigenous fleshy-fruited plant species from a region using a simple model that scored species based upon measures of fruit phenology, morphology, conspicuousness and accessibility relative to a target invasive species, Lantana (Lantana camara). The model successfully produced high scores for indigenous plant species that were used by more of the frugivores of Lantana than a random selection of plants, suggesting that this approach warrants further investigation.