48 resultados para Climate risks
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Climate affects the custard apple industry in a range of ways through impacts on growth, disease risk, fruit set and industry location. Climates in Australia are influenced by surrounding oceans, and are very variable from year to year. However, amidst this variability there are significant trends, with Australian annual mean temperatures increasing since 1910, and particularly since 1950, with night-time temperatures increasing faster (0.11oC/decade) than daytime temperatures (0.06oC/decade). These temperature increases and other climate changes are expected to continue as a result of greenhouse gas emissions, with ongoing impacts on the custard apple industry. Five sites were chosen to assess possible future climate changes : Mareeba, Yeppoon, Bundaberg, Nambour and Lismore, these sites representing the extent of the majority of custard apple production in eastern Australia. A fifth site (Coffs Harbour) was selected as it is south of the current production regions. A mean warming of 0.8 to 1.2oC is anticipated over most of these sites by the year 2030, relative to 1990. This paper assesses the potential effects of climate change on custard apple production, and suggests strategies for adaptation.
Resumo:
With the aim of increasing peanut production in Australia, the Australian peanut industry has recently considered growing peanuts in rotation with maize at Katherine in the Northern Territory—a location with a semi-arid tropical climate and surplus irrigation capacity. We used the well-validated APSIM model to examine potential agronomic benefits and long-term risks of this strategy under the current and warmer climates of the new region. Yield of the two crops, irrigation requirement, total soil organic carbon (SOC), nitrogen (N) losses and greenhouse gas (GHG) emissions were simulated. Sixteen climate stressors were used; these were generated by using global climate models ECHAM5, GFDL2.1, GFDL2.0 and MRIGCM232 with a median sensitivity under two Special Report of Emissions Scenarios over the 2030 and 2050 timeframes plus current climate (baseline) for Katherine. Effects were compared at three levels of irrigation and three levels of N fertiliser applied to maize grown in rotations of wet-season peanut and dry-season maize (WPDM), and wet-season maize and dry-season peanut (WMDP). The climate stressors projected average temperature increases of 1°C to 2.8°C in the dry (baseline 24.4°C) and wet (baseline 29.5°C) seasons for the 2030 and 2050 timeframes, respectively. Increased temperature caused a reduction in yield of both crops in both rotations. However, the overall yield advantage of WPDM increased from 41% to up to 53% compared with the industry-preferred sequence of WMDP under the worst climate projection. Increased temperature increased the irrigation requirement by up to 11% in WPDM, but caused a smaller reduction in total SOC accumulation and smaller increases in N losses and GHG emission compared with WMDP. We conclude that although increased temperature will reduce productivity and total SOC accumulation, and increase N losses and GHG emissions in Katherine or similar northern Australian environments, the WPDM sequence should be preferable over the industry-preferred sequence because of its overall yield and sustainability advantages in warmer climates. Any limitations of irrigation resulting from climate change could, however, limit these advantages.
Resumo:
In recent years, there have been significant developments in climate science relevant to agriculture and natural resource management. Assessing impacts of climate variability and use of seasonal climate forecasts have become increasingly important elements in the management "toolkit" for many Australian farmers. Consideration of climate change further increases the need for improved management strategies. While climate risk extension activities have kept pace with advances in climate science, a national review of the Vocational Education and Training system in Australia in relation to "weather and climate" showed that these topics were "poorly represented" at the management level in the Australian Qualifications Framework, and needed increased emphasis. Consequently, a new Unit of Competency concerning management of climatic risk was developed and accredited to address this deficiency. The objective of the unit was to build knowledge and skills for better management of climate variability via the elements of surveying climatic and enterprise data; analysing climatic risks and opportunities; and developing climatic risk management strategies. This paper describes establishment of a new unit for vocational education that is designed to harness recent developments in applied climate science for better management of Australia's highly variable climate. The main benefits of the new unit of competency, "Developing climatic risk management strategies,"were seen as improving decisions in climate and agriculture, and reducing climate risk exposure to enhance sustainable agriculture. The educational unit is now within the scope of agricultural colleges, universities, and registered training organisations as an accredited unit.
Resumo:
Aflatoxins are highly carcinogenic mycotoxins produced by two fungi, Aspergillus flavus and A. parasiticus, under specific moisture and temperature conditions before harvest and/or during storage of a wide range of crops including maize. Modelling of interactions between host plant and environment during the season can enable quantification of preharvest aflatoxin risk and its potential management. A model was developed to quantify climatic risks of aflatoxin contamination in maize using principles previously used for peanuts. The model outputs an aflatoxin risk index in response to seasonal temperature and soil moisture during the maize grain filling period using the APSIM's maize module. The model performed well in simulating climatic risk of aflatoxin contamination in maize as indicated by a significant R2 (P ≤ 0.01) between aflatoxin risk index and the measured aflatoxin B1 in crop samples, which was 0.69 for a range of rainfed Australian locations and 0.62 when irrigated locations were also included in the analysis. The model was further applied to determine probabilities of exceeding a given aflatoxin risk in four non-irrigated maize growing locations of Queensland using 106 years of historical climatic data. Locations with both dry and hot climates had a much higher probability of higher aflatoxin risk compared with locations having either dry or hot conditions alone. Scenario analysis suggested that under non-irrigated conditions the risk of aflatoxin contamination could be minimised by adjusting sowing time or selecting an appropriate hybrid to better match the grain filling period to coincide with lower temperature and water stress conditions.
Resumo:
Climate variability and change are risk factors for climate sensitive activities such as agriculture. Managing these risks requires "climate knowledge", i.e. a sound understanding of causes and consequences of climate variability and knowledge of potential management options that are suitable in light of the climatic risks posed. Often such information about prognostic variables (e.g. yield, rainfall, run-off) is provided in probabilistic terms (e.g. via cumulative distribution functions, CDF), whereby the quantitative assessments of these alternative management options is based on such CDFs. Sound statistical approaches are needed in order to assess whether difference between such CDFs are intrinsic features of systems dynamics or chance events (i.e. quantifying evidences against an appropriate null hypothesis). Statistical procedures that rely on such a hypothesis testing framework are referred to as "inferential statistics" in contrast to descriptive statistics (e.g. mean, median, variance of population samples, skill scores). Here we report on the extension of some of the existing inferential techniques that provides more relevant and adequate information for decision making under uncertainty.
Resumo:
The complexity, variability and vastness of the northern Australian rangelands make it difficult to assess the risks associated with climate change. In this paper we present a methodology to help industry and primary producers assess risks associated with climate change and to assess the effectiveness of adaptation options in managing those risks. Our assessment involved three steps. Initially, the impacts and adaptation responses were documented in matrices by ‘experts’ (rangeland and climate scientists). Then, a modified risk management framework was used to develop risk management matrices that identified important impacts, areas of greatest vulnerability (combination of potential impact and adaptive capacity) and priority areas for action at the industry level. The process was easy to implement and useful for arranging and analysing large amounts of information (both complex and interacting). Lastly, regional extension officers (after minimal ‘climate literacy’ training) could build on existing knowledge provided here and implement the risk management process in workshops with rangeland land managers. Their participation is likely to identify relevant and robust adaptive responses that are most likely to be included in regional and property management decisions. The process developed here for the grazing industry could be modified and used in other industries and sectors. By 2030, some areas of northern Australia will experience more droughts and lower summer rainfall. This poses a serious threat to the rangelands. Although the impacts and adaptive responses will vary between ecological and geographic systems, climate change is expected to have noticeable detrimental effects: reduced pasture growth and surface water availability; increased competition from woody vegetation; decreased production per head (beef and wool) and gross margin; and adverse impacts on biodiversity. Further research and development is needed to identify the most vulnerable regions, and to inform policy in time to facilitate transitional change and enable land managers to implement those changes.
Resumo:
The research undertaken here was in response to a decision by a major food producer in about 2009 to consider establishing processing tomato production in northern Australia. This was in response to a lack of water availability in the Goulburn Valley region following the extensive drought that continued until 2011. The high price of water and the uncertainty that went with it was important in making the decision to look at sites within Queensland. This presented an opportunity to develop a tomato production model for the varieties used in the processing industry and to use this as a case study along with rice and cotton production. Following some unsuccessful early trials and difficulties associated with the Global Financial Crisis, large scale studies by the food producer were abandoned. This report uses the data that was collected prior to this decision and contrasts the use of crop modelling with simpler climatic analyses that can be undertaken to investigate the impact of climate change on production systems. Crop modelling can make a significant contribution to our understanding of the impacts of climate variability and climate change because it harnesses the detailed understanding of physiology of the crop in a way that statistical or other analytical approaches cannot do. There is a high overhead, but given that trials are being conducted for a wide range of crops for a variety of purposes, breeding, fertiliser trials etc., it would appear to be profitable to link researchers with modelling expertise with those undertaking field trials. There are few more cost-effective approaches than modelling that can provide a pathway to understanding future climates and their impact on food production.
Resumo:
This study presents the use of a whole farm model in a participatory modelling research approach to examine the sensitivity of four contrasting case study farms to a likely climate change scenario. The newly generated information was used to support discussions with the participating farmers in the search for options to design more profitable and sustainable farming systems in Queensland Australia. The four case studies contrasted in key systems characteristics: opportunism in decision making, i.e. flexible versus rigid crop rotations; function, i.e. production of livestock or crops; and level of intensification, i.e. dryland versus irrigated agriculture. Tested tactical and strategic changes under a baseline and climate change scenario (CCS) involved changes in the allocation of land between cropping and grazing enterprises, alternative allocations of limited irrigation water across cropping enterprises, and different management rules for planting wheat and sorghum in rainfed cropping. The results show that expected impacts from a likely climate change scenario were evident in the following increasing order: the irrigated cropping farm case study, the cropping and grazing farm, the more opportunistic rainfed cropping farm and the least opportunistic rainfed cropping farm. We concluded that in most cases the participating farmers were operating close to the efficiency frontier (i.e. in the relationship between profits and risks). This indicated that options to adapt to climate change might need to evolve from investments in the development of more innovative cropping and grazing systems and/or transformational changes on existing farming systems. We expect that even though assimilating expected changes in climate seems to be rather intangible and premature for these farmers, as innovations are developed, adaptation is likely to follow quickly. The multiple interactions among farm management components in complex and dynamic farm businesses operating in a variable and changing climate, make the use of whole farm participatory modelling approaches valuable tools to quantify benefits and trade-offs from alternative farming systems designs in the search for improved profitability and resilience.
Resumo:
There is uncertainty over the potential changes to rainfall across northern Australia under climate change. Since rainfall is a key driver of pasture growth, cattle numbers and the resulting animal productivity and beef business profitability, the ability to anticipate possible management strategies within such uncertainty is crucial. The Climate Savvy Grazing project used existing research, expert knowledge and computer modelling to explore the best-bet management strategies within best, median and worse-case future climate scenarios. All three scenarios indicated changes to the environment and resources upon which the grazing industry of northern Australia depends. Well-adapted management strategies under a changing climate are very similar to best practice within current climatic conditions. Maintaining good land condition builds resource resilience, maximises opportunities under higher rainfall years and reduces the risk of degradation during drought and failed wet seasons. Matching stocking rate to the safe long-term carrying capacity of the land is essential; reducing stock numbers in response to poor seasons and conservatively increasing stock numbers in response to better seasons generally improves profitability and maintains land in good condition. Spelling over the summer growing season will improve land condition under a changing climate as it does under current conditions. Six regions were included within the project. Of these, the Victoria River District in the Northern Territory, Gulf country of Queensland and the Kimberley region of Western Australia had projections of similar or higher than current rainfall and the potential for carrying capacity to increase. The Alice Springs, Maranoa-Balonne and Fitzroy regions had projections of generally drying conditions and the greatest risk of reduced pasture growth and carrying capacity. Encouraging producers to consider and act on the risks, opportunities and management options inherent in climate change was a key goal of the project. More than 60,000 beef producers, advisors and stakeholders are now more aware of the management strategies which build resource resilience, and that resilience helps buffer against the effects of variable and changing climatic conditions. Over 700 producers have stated they have improved confidence, skills and knowledge to attempt new practices to build resilience. During the course of the project, more than 165 beef producers reported they have implemented changes to build resource and business resilience.
Resumo:
The Rangeland Journal – Climate Clever Beef special issue examines options for the beef industry in northern Australia to contribute to the reduction in global greenhouse gas (GHG) emissions and to engage in the carbon economy. Relative to its gross value (A$5 billion), the northern beef industry is responsible for a sizable proportion of national reportable GHG emissions (8–10%) through enteric methane, savanna burning, vegetation clearing and land degradation. The industry occupies large areas of land and has the potential to impact the carbon cycle by sequestering carbon or reducing carbon loss. Furthermore, much of the industry is currently not achieving its productivity potential, which suggests that there are opportunities to improve the emissions intensity of beef production. Improving the industry’s GHG emissions performance is important for its environmental reputation and may benefit individual businesses through improved production efficiency and revenue from the carbon economy. The Climate Clever Beef initiative collaborated with beef businesses in six regions across northern Australia to better understand the links between GHG emissions and carbon stocks, land condition, herd productivity and profitability. The current performance of businesses was measured and alternate management options were identified and evaluated. Opportunities to participate in the carbon economy through the Australian Government’s Emissions Reduction Fund (ERF) were also assessed. The initiative achieved significant producer engagement and collaboration resulting in practice change by 78 people from 35 businesses, managing more than 1 272 000 ha and 132 000 cattle. Carbon farming opportunities were identified that could improve both business performance and emissions intensity. However, these opportunities were not without significant risks, trade-offs and limitations particularly in relation to business scale, and uncertainty in carbon price and the response of soil and vegetation carbon sequestration to management. This paper discusses opportunities for reducing emissions, improving emission intensity and carbon sequestration, and outlines the approach taken to achieve beef business engagement and practice change. The paper concludes with some considerations for policy makers.
Resumo:
Decision-making in agriculture is carried out in an uncertain environment with farmers often seeking information to reduce risk. As a result of the extreme variability of rainfall and stream-flows in north-eastern Australia, water supplies for irrigated agriculture are a limiting factor and a source of risk. The present study examined the use of seasonal climate forecasting (SCF) when calculating planting areas for irrigated cotton in the northern Murray Darling Basin. Results show that minimising risk by adjusting plant areas in response to SCF can lead to significant gains in gross margin returns. However, how farmers respond to SCF is dependent on several other factors including irrigators’ attitude towards risk.
Resumo:
The Gascoyne-Murchison region of Western Australia experiences an arid to semi-arid climate with a highly variable temporal and spatial rainfall distribution. The region has around 39.2 million hectares available for pastoral lease and supports predominantly catle and sheep grazing leases. In recent years a number of climate forecasting systems have been available offering rainfall probabilities with different lead times and a forecast period; however, the extent to which these systems are capable of fulfilling the requirements of the local pastoralists is still ambiguous. Issues can range from ensuring forecasts are issued with sufficient lead time to enable key planning or decisions to be revoked or altered, to ensuring forecast language is simple and clear, to negate possible misunderstandings in interpretation. A climate research project sought to provide an objective method to determine which available forecasting systems had the greatest forecasting skill at times of the year relevant to local property management. To aid this climate research project, the study reported here was undertaken with an overall objective of exploring local pastoralists' climate information needs. We also explored how well they understand common climate forecast terms such as 'mean', median' and 'probability', and how they interpret and apply forecast information to decisions. A stratified, proportional random sampling was used for the purpose of deriving the representative sample based on rainfall-enterprise combinations. In order to provide more time for decision-making than existing operational forecasts that are issued with zero lead time, pastoralists requested that forecasts be issued for May-July and January-March with lead times counting down from 4 to 0 months. We found forecasts of between 20 and 50 mm break-of-season or follow-up rainfall were likely to influence decisions. Eighty percent of pastoralists demonstrated in a test question that they had a poor technical understanding of how to interpret the standard wording of a probabilistic median rainfall forecast. this is worthy of further research to investigate whether inappropriate management decisions are being made because the forecasts are being misunderstood. We found more than half the respondents regularly access and use weather and climate forecasts or outlook information from a range of sources and almost three-quarters considered climate information or tools useful, with preferred methods for accessing this information by email, faxback service, internet and the Department of Agriculture Western Australia's Pastoral Memo. Despite differences in enterprise types and rainfall seasonality across the region we found seasonal climate forecasting needs were relatively consistent. It became clear that providing basic training and working with pastoralists to help them understand regional climatic drivers, climate terminology and jargon, and the best ways to apply the forecasts to enhance decision-making are important to improve their use of information. Consideration could also be given to engaging a range of producers to write the climate forecasts themselves in the language they use and understand, in consultation with the scientists who prepare the forecasts.
Resumo:
Researchers developing climate-based forecasts, workshops, software tools and information to aid grazier decisions undertook an evaluation study to enhance planning and benchmark impact. One hundred graziers in Western Queensland were randomly selected from 7 shires and surveyed by mail and telephone (43 respondents) to explore levels of knowledge and use of climate information, practices and information needs. We found 36% of respondents apply the Southern Oscillation Index to property decisions but 92% were unaware El Niño Southern Oscillation’s predictive signal in the region is greater for pasture growth than rainfall, suggesting they may not recognise the potential of pasture growth forecasts. Almost 75% of graziers consider they are conservative or risk averse in their attitude to managing their enterprise. Mail respondents (n= 20) if given a 68%, on average, probability of exceeding median rainfall forecast may change a decision; almost two-thirds vary stocking rate based on forage available, last year’s pasture growth or the Southern Oscillation Index; the balance maintain a constant stocking rate strategy; 90% have access to a computer; 75% to the internet and 95% have a fax. This paper presents findings of the study and draws comparisons with a similar study of 174 irrigators in the Northern Murray-Darling Basin (Aust. J. Exp. Ag. 44, 247-257). New insights and information gained are helping the team better understand client needs and plan, design and extend tools and information tailored to grazier knowledge, practice, information needs and preferences. Results have also provided a benchmark against which to measure project impact and have influenced the team to make important changes to their project planning, activities and methods for transferring technology tailored to grazier preferences.
Resumo:
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580-663 mm and 466-656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R 2 = 0.89) and ETc/ETp (R 2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.
Resumo:
Survey methods were engaged to measure the change in use and knowledge of climate information by pastoralists in western Queensland. The initial mail survey was undertaken in 2000-01 (n=43) and provided a useful benchmark of pastoralists climate knowledge. Two years of climate applications activities were completed and clients were re-surveyed in 2003 (n=49) to measure the change in knowledge and assess the effectiveness of the climate applications activities. Two methods were used to assess changes in client knowledge, viz., self-assessment and test questions. We found that the use of seasonal climate forecasts in decision making increased from 36% in 2001 (n=42) to 51% in 2003 (n=49) (P=0.07). The self-assessment technique was unsatisfactory as a measure of changing knowledge over short periods (1-3 years), but the test question technique was successful and indicated an improvement in climate knowledge among respondents. The increased levels of use of seasonal climate forecasts in management and improved knowledge was partly attributed to the climate applications activities of the project. Further, those who used seasonal forecasting (n=25) didn't understand key components of forecasts (e.g. probability, median) better than those who didn't use seasonal forecasts (n=24) (P>0.05). This identifies the potential for misunderstanding and misinterpretation of forecasts among users and highlights the need for providers of forecasts to understand the difficulties and prepare simply written descriptions of forecasts and disseminate these with the maps showing probabilities. The most preferred means of accessing climate information were internet, email, 'The Season Ahead' newsletter and newspaper. The least preferred were direct contact with extension officers and attending field days and group meetings. Eighty-six percent of respondents used the internet and 67% used ADSL broadband internet (April 2003). Despite these findings, extension officers play a key role in preparing and publishing the information on the web, in emails and newsletters. We also believe that direct contact with extension officers trained in climate applications is desirable in workshop-like events to improve knowledge of the difficult concepts underpinning climate forecasts, which may then stimulate further adoption.