5 resultados para Climate Impact
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Reforestation of agricultural land with mixed-species environmental plantings (native trees and shrubs) can contribute to mitigation of climate change through sequestration of carbon. Although soil carbon sequestration following reforestation has been investigated at site- and regional-scales, there are few studies across regions where the impact of a broad range of site conditions and management practices can be assessed. We collated new and existing data on soil organic carbon (SOC, 0–30 cm depth, N = 117 sites) and litter (N = 106 sites) under mixed-species plantings and an agricultural pair or baseline across southern and eastern Australia. Sites covered a range of previous land uses, initial SOC stocks, climatic conditions and management types. Differences in total SOC stocks following reforestation were significant at 52% of sites, with a mean rate of increase of 0.57 ± 0.06 Mg C ha−1 y−1. Increases were largely in the particulate fraction, which increased significantly at 46% of sites compared with increases at 27% of sites for the humus fraction. Although relative increase was highest in the particulate fraction, the humus fraction was the largest proportion of total SOC and so absolute differences in both fractions were similar. Accumulation rates of carbon in litter were 0.39 ± 0.02 Mg C ha−1 y−1, increasing the total (soil + litter) annual rate of carbon sequestration by 68%. Previously-cropped sites accumulated more SOC than previously-grazed sites. The explained variance differed widely among empirical models of differences in SOC stocks following reforestation according to SOC fraction and depth for previously-grazed (R2 = 0.18–0.51) and previously-cropped (R2 = 0.14–0.60) sites. For previously-grazed sites, differences in SOC following reforestation were negatively related to total SOC in the pasture. By comparison, for previously-cropped sites, differences in SOC were positively related to mean annual rainfall. This improved broad-scale understanding of the magnitude and predictors of changes in stocks of soil and litter C following reforestation is valuable for the development of policy on carbon markets and the establishment of future mixed-species environmental plantings.
Resumo:
Most Australian banana production occurs on the north-eastern tropical coast between latitudes 15-18°S, and can experience summer cyclone activity. Damage from severe tropical cyclones has serious impact on banana-based livelihoods. The most significant impacts include immediate loss of production and income for several months, the region-wide synchronization of cropping and the expense of rehabilitating affected plantations. Severe tropical cyclones have directly affected the main production region twice in recent years Tropical Cyclone (TC) Larry (Category 4) in March 2006 and TC Yasi (Category 5) in February 2011. Based on TC Larry experiences, pre- and post-cyclone farm practices were developed to reduce these impacts in future cyclonic events. The main pre-cyclone farm practice focused on maintaining production units and an earlier return to fruit production by partially or completely removing the plant canopy to reduce wind resistance. Post-cyclone farm practices focused on managing the industry-wide crop synchronization using crop timing techniques to achieve a staggered return to cropping by scheduling production to provide continuous fruit supply. With TC Yasi in 2011, some banana producers implemented these practices, allowing them to examine their effectiveness in reducing cyclonic impacts. Additional research and development activities were conducted to refine our understanding of their effectiveness and improve their application for future cyclonic events. Based on these activities and farm-based observations, suggested practice-based management strategies can be developed to help reduce the impact of severe tropical cyclones in the future. Canopy removal maintained banana plants as productive units, and provided earlier but smaller bunches, generating earlier-than-expected income. Queensland producers expressed willingness to adopt canopy removal for future cyclone threats where appropriate, despite its labor-intensiveness. Mechanization would allow larger scale adoption. Implementing a staggered cropping program successfully achieved a consistent, continuous fruit supply after a cyclone impact. Both techniques should be applicable to other cyclone-prone regions.
Resumo:
The Rangeland Journal – Climate Clever Beef special issue examines options for the beef industry in northern Australia to contribute to the reduction in global greenhouse gas (GHG) emissions and to engage in the carbon economy. Relative to its gross value (A$5 billion), the northern beef industry is responsible for a sizable proportion of national reportable GHG emissions (8–10%) through enteric methane, savanna burning, vegetation clearing and land degradation. The industry occupies large areas of land and has the potential to impact the carbon cycle by sequestering carbon or reducing carbon loss. Furthermore, much of the industry is currently not achieving its productivity potential, which suggests that there are opportunities to improve the emissions intensity of beef production. Improving the industry’s GHG emissions performance is important for its environmental reputation and may benefit individual businesses through improved production efficiency and revenue from the carbon economy. The Climate Clever Beef initiative collaborated with beef businesses in six regions across northern Australia to better understand the links between GHG emissions and carbon stocks, land condition, herd productivity and profitability. The current performance of businesses was measured and alternate management options were identified and evaluated. Opportunities to participate in the carbon economy through the Australian Government’s Emissions Reduction Fund (ERF) were also assessed. The initiative achieved significant producer engagement and collaboration resulting in practice change by 78 people from 35 businesses, managing more than 1 272 000 ha and 132 000 cattle. Carbon farming opportunities were identified that could improve both business performance and emissions intensity. However, these opportunities were not without significant risks, trade-offs and limitations particularly in relation to business scale, and uncertainty in carbon price and the response of soil and vegetation carbon sequestration to management. This paper discusses opportunities for reducing emissions, improving emission intensity and carbon sequestration, and outlines the approach taken to achieve beef business engagement and practice change. The paper concludes with some considerations for policy makers.
Resumo:
Beef businesses in northern Australia are facing increased pressure to be productive and profitable with challenges such as climate variability and poor financial performance over the past decade. Declining terms of trade, limited recent gains in on-farm productivity, low profit margins under current management systems and current climatic conditions will leave little capacity for businesses to absorb climate change-induced losses. In order to generate a whole-of-business focus towards management change, the Climate Clever Beef project in the Maranoa-Balonne region of Queensland trialled the use of business analysis with beef producers to improve financial literacy, provide a greater understanding of current business performance and initiate changes to current management practices. Demonstration properties were engaged and a systematic approach was used to assess current business performance, evaluate impacts of management changes on the business and to trial practices and promote successful outcomes to the wider industry. Focus was concentrated on improving financial literacy skills, understanding the business’ key performance indicators and modifying practices to improve both business productivity and profitability. To best achieve the desired outcomes, several extension models were employed: the ‘group facilitation/empowerment model’, the ‘individual consultant/mentor model’ and the ‘technology development model’. Providing producers with a whole-of-business approach and using business analysis in conjunction with on-farm trials and various extension methods proved to be a successful way to encourage producers in the region to adopt new practices into their business, in the areas of greatest impact. The areas targeted for development within businesses generally led to improvements in animal performance and grazing land management further improving the prospects for climate resilience.
Resumo:
As climate change continues to impact socio-ecological systems, tools that assist conservation managers to understand vulnerability and target adaptations are essential. Quantitative assessments of vulnerability are rare because available frameworks are complex and lack guidance for dealing with data limitations and integrating across scales and disciplines. This paper describes a semi-quantitative method for assessing vulnerability to climate change that integrates socio-ecological factors to address management objectives and support decision-making. The method applies a framework first adopted by the Intergovernmental Panel on Climate Change and uses a structured 10-step process. The scores for each framework element are normalized and multiplied to produce a vulnerability score and then the assessed components are ranked from high to low vulnerability. Sensitivity analyses determine which indicators most influence the analysis and the resultant decision-making process so data quality for these indicators can be reviewed to increase robustness. Prioritisation of components for conservation considers other economic, social and cultural values with vulnerability rankings to target actions that reduce vulnerability to climate change by decreasing exposure or sensitivity and/or increasing adaptive capacity. This framework provides practical decision-support and has been applied to marine ecosystems and fisheries, with two case applications provided as examples: (1) food security in Pacific Island nations under climate-driven fish declines, and (2) fisheries in the Gulf of Carpentaria, northern Australia. The step-wise process outlined here is broadly applicable and can be undertaken with minimal resources using existing data, thereby having great potential to inform adaptive natural resource management in diverse locations.