3 resultados para Choruses (Mixed voices, 4 parts)

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variable-rate technologies and site-specific crop nutrient management require real-time spatial information about the potential for response to in-season crop management interventions. Thermal and spectral properties of canopies can provide relevant information for non-destructive measurement of crop water and nitrogen stresses. In previous studies, foliage temperature was successfully estimated from canopy-scale (mixed foliage and soil) temperatures and the multispectral Canopy Chlorophyll Content Index (CCCI) was effective in measuring canopy-scale N status in rainfed wheat (Triticum aestivum L.) systems in Horsham, Victoria, Australia. In the present study, results showed that under irrigated wheat systems in Maricopa, Arizona, USA, the theoretical derivation of foliage temperature unmixing produced relationships similar to those in Horsham. Derivation of the CCCI led to an r2 relationship with chlorophyll a of 0.53 after Zadoks stage 43. This was later than the relationship (r2 = 0.68) developed for Horsham after Zadoks stage 33 but early enough to be used for potential mid-season N fertilizer recommendations. Additionally, ground-based hyperspectral data estimated plant N (g kg)1) in Horsham with an r2 = 0.86 but was confounded by water supply and N interactions. By combining canopy thermal and spectral properties, varying water and N status can potentially be identified eventually permitting targeted N applications to those parts of a field where N can be used most efficiently by the crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grass (monocots) and non-grass (dicots) proportions in ruminant diets are important nutritionally because the non-grasses are usually higher in nutritive value, particularly protein, than the grasses, especially in tropical pastures. For ruminants grazing tropical pastures where the grasses are C-4 species and most non-grasses are C-3 species, the ratio of C-13/C-12 in diet and faeces, measured as delta C-13 parts per thousand, is proportional to dietary non-grass%. This paper describes the development of a faecal near infrared (NIR) spectroscopy calibration equation for predicting faecal delta C-13 from which dietary grass and non-grass proportions can be calculated. Calibration development used cattle faeces derived from diets containing only C-3 non-grass and C-4 grass components, and a series of expansion and validation steps was employed to develop robustness and predictive reliability. The final calibration equation contained 1637 samples and faecal delta C-13 range (parts per thousand) of [12.27]-[27.65]. Calibration statistics were: standard error of calibration (SEC) of 0.78, standard error of cross-validation (SECV) of 0.80, standard deviation (SD) of reference values of 3.11 and R-2 of 0.94. Validation statistics for the final calibration equation applied to 60 samples were: standard error of prediction (SEP) of 0.87, bias of -0.15, R-2 of 0.92 and RPD of 3.16. The calibration equation was also tested on faeces from diets containing C-4 non-grass species or temperate C-3 grass species. Faecal delta C-13 predictions indicated that the spectral basis of the calibration was not related to C-13/C-12 ratios per se but to consistent differences between grasses and non-grasses in chemical composition and that the differences were modified by photosynthetic pathway. Thus, although the calibration equation could not be used to make valid faecal delta C-13 predictions when the diet contained either C-3 grass or C-4 non-grass, it could be used to make useful estimates of dietary non-grass proportions. It could also be ut :sed to make useful estimates of non-grass in mixed C-3 grass/non-grass diets by applying a modified formula to calculate non-grass from predicted faecal delta C-13. The development of a robust faecal-NIR calibration equation for estimating non-grass proportions in the diets of grazing cattle demonstrated a novel and useful application of NIR spectroscopy in agriculture.