7 resultados para Chondrocyte subpopulations

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melaleuca densispicata Byrnes is an uncommon species with a limited distribution, comprising disjunct populations in inland southern Queensland and northern New South Wales, Australia. It is a dense, woody shrub, 2–4 m in height, which exhibits a marked 'clumping' growth habit. It has thick, papery bark and displays many white flowers during spring or early summer. Although it has long been known to exist, M. densispicata was only formally described in 1984, and very little is currently known about its ecology or specific management requirements. There are only seven known subpopulations of the species across its range. A major population at the western limit of its distribution occurs on Currawinya National Park (28°52'S, 144°30'E). Here, it is locally abundant and listed as a noteworthy plant species under the Management Plan (Queensland Parks & Wildlife Service 2001). This study aimed to identify patterns in the distribution of M. densispicata in Currawinya National Park, describe its ecological niche and role, and provide management recommendations for the species within the study area. Recent anecdotal observations of recruitment failure in south-western Queensland (Peter McRae, QPWS, October 2004, pers. comm.; Dick O'Connell, local grazier, July 2005 pers. comm.) caused additional emphasis to be placed on the examination of recruitment and recruitment factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alimentary carbohydrate overload is a significant cause of laminitis in horses and is correlated with drastic shifts in the composition of hindgut microbiota. Equine hindgut streptococcal species (EHSS), predominantly Streptococcus lutetiensis, have been shown to be the most common microorganisms culturable from the equine caecum prior to the onset of laminitis. However, the inherent biases of culture-based methods are estimated to preclude up to 70% of the normal caecal microbiota. The objective of this study was to evaluate bacterial population shifts occurring in the equine caecum throughout the course of oligofructose-induced laminitis using several culture-independent techniques and to correlate these with caecal lactate, volatile fatty acid and degrees of polymerization 3-7 fructo-oligosaccharide concentrations. Our data conclusively show that of the total microbiota present in the equine hindgut, the EHSS S. lutetiensis is the predominant microorganism that proliferates prior to the onset of laminitis, utilizing oligofructose to produce large quantities of lactate. Population shifts in lactobacilli and Escherichia coli subpopulations occur secondarily to the EHSS population shifts, thus confirming that lactobacilli and coliforms have no role in laminitis. A large, curved, Gram-negative rod previously observed during the early phases of laminitis induction was most closely related to the Anaerovibrio genus and most likely represents a new, yet to be cultured, genus and species. Correlation of fluorescence in situ hybridization and quantitative real-time PCR results provide evidence supporting the hypothesis that laminitis is associated with the death en masse and rapid cell lysis of EHSS. If EHSS are lysed, liberated cellular components may initiate laminitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The red-finned blue-eye (Scaturiginichthys vermeilipinnis) is endemic to a single complex of springs emanating from the Great Artesian Basin, Australia. The species has been recorded as naturally occurring in eight separate very shallow (generally <20 mm) springs, with a combined wetland area of ~0.3 ha. Since its discovery in 1990, five red-finned blue-eye (RFBE) populations have been lost and subsequent colonisation has occurred in two spring wetlands. Current population size is estimated at <3000 individuals. Artesian bores have reduced aquifer pressure, standing water levels and spring-flows in the district. There is evidence of spatial separation within the spring pools where RFBE and the introduced fish gambusia (Gambusia holbrooki) co-occur, although both species are forced together when seasonal extremes affect spring size and water temperature. Gambusia was present in four of the five springs where RFBE populations have been lost. Four out of the five remaining subpopulations of RFBE are Gambusia free. Circumstantial evidence suggests that gambusia is a major threat to red-finned blue-eyes. The impact of Gambusia is probably exacerbated by domestic stock (cattle and sheep), feral goats and pigs that utilise the springs and can negatively affect water quality and flow patterns. Three attempts to translocate RFBE to apparently suitable springs elsewhere within the complex have failed. Opportunities to mitigate threats are discussed, along with directions for future research to improve management of this extremely threatened fish and habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An outbreak of equine influenza (EI) caused by influenza A H3N8 subtype virus occurred in the Australian states of Queensland and New South Wales in August 2007. Infection in the Australian horse population was associated with the introduction of infection by horses from overseas. The first case of EI in Queensland was detected on 25 August 2007 at an equestrian sporting event. Infection subsequently spread locally and to other clusters through horse movements prior to the implementation of an official standstill. There were five main clusters of infected properties during this outbreak and several outliers, which were investigated to find the potential mechanism of disease spread. To contain the outbreak, Queensland was divided into infection status zones, with different movement controls applied to each zone. Vaccination was implemented strategically in infected areas and within horse subpopulations. Control and eventual eradication of EI from Queensland was achieved through a combination of quarantine, biosecurity measures, movement control, rapid diagnostic testing and vaccination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Species delineation in the spotted gum complex was revisited focusing on Corymbia maculata. This study expands the range of C. maculata analysed with microsatellite markers to include populations from the north of the species range. It supported earlier findings that it is a cohesive genetic entity, well resolved from northern spotted gum taxa, Corymbia citriodora and Corymbia henryi; and inferences that its insularity is due to early lineage divergence and historical isolation. The northern extent of C. maculata sampled, as defined by chloroplast and nuclear genomes predominantly of C. maculata character, was the location of Kiwarrak, south of the Manning River near Taree in New South Wales. Trees from a recognised intergrade zone at the Yarratt locality, around 26 km north of Kiwarrak, also possessed a uniquely C. maculata chloroplast haplotype, but their nuclear genomes were predominantly of northern taxa ancestry. Range expansion of northern taxa leading to southerly gene movement into populations formerly C. maculata, would account for this apparent instance of chloroplast capture. Two subpopulations were identified in C. maculata, a northern population of which the Ourimbah locality was the most southerly studied, and a southern population of which Wingello was the most northerly locality studied. Diminished levels of northern taxa ancestry, i.e. C. citriodora or C. henryi, in individuals from the southern, relative to the northern subpopulation of C. maculata, suggested that secondary contact with northern taxa contributes to its substructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogens and pests of stored grains move through complex dynamic networks linking fields, farms, and bulk storage facilities. Human transport and other forms of dispersal link the components of this network. A network model for pathogen and pest movement through stored grain systems is a first step toward new sampling and mitigation strategies that utilize information about the network structure. An understanding of network structure can be applied to identifying the key network components for pathogen or pest movement through the system. For example, it may be useful to identify a network node, such as a local grain storage facility, through which grain from a large number of fields will be accumulated and move through the network. This node may be particularly important for sampling and mitigation. In some cases more detailed information about network structure can identify key nodes that link two large sections of the network, such that management at the key nodes will greatly reduce the risk of spread between the two sections. In addition to the spread of particular species of pathogens and pests, we also evaluate the spread of problematic subpopulations, such as subpopulations with pesticide resistance. We present an analysis of stored grain pathogen and pest networks for Australia and the United States.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wheat is at peak quality soon after harvest. Subsequently, diverse biota use wheat as a resource in storage, including insects and mycotoxin-producing fungi. Transportation networks for stored grain are crucial to food security and provide a model system for an analysis of the population structure, evolution, and dispersal of biota in networks. We evaluated the structure of rail networks for grain transport in the United States and Eastern Australia to identify the shortest paths for the anthropogenic dispersal of pests and mycotoxins, as well as the major sources, sinks, and bridges for movement. We found important differences in the risk profile in these two countries and identified priority control points for sampling, detection, and management. An understanding of these key locations and roles within the network is a new type of basic research result in postharvest science and will provide insights for the integrated pest management of high-risk subpopulations, such as pesticide-resistant insect pests.