10 resultados para Check digits
em eResearch Archive - Queensland Department of Agriculture
Resumo:
An annotated check list of Ramularia species in Australia, based on re-examinations of collections deposited at BRIP, DAR and VPRI, is presented. Twenty-eight species are reported in Australia, most of them on introduced host plants. The new species Cladosporium myrtacearum, Ramularia craspediicola and R. muehlenbeckiae are described. Collections of Cladosporium uredinicola, Neoramularia karelii, Passalora perfoliati and Pseudocercospora pongamiae-pinnatae, previously deposited in Australian herbaria under 'Ramularia sp.', are newly recognised for Australia.
Resumo:
The intent of this study was to design, document and implement a Quality Management System (QMS) into a laboratory that incorporated both research and development (R&D) and routine analytical activities. In addition, it was necessary for the QMS to be easily and efficiently maintained to: (a) provide documented evidence that would validate the system's compliance with a certifiable standard, (b) fit the purpose of the laboratory, (c) accommodate prevailing government policies and standards, and (d) promote positive outcomes for the laboratory through documentation and verification of the procedures and methodologies implemented. Initially, a matrix was developed that documented the standards' requirements and the necessary steps to be made to meet those requirements. The matrix provided a check mechanism on the progression of the system's development. In addition, it was later utilised in the Quality Manual as a reference tool for the location of full procedures documented elsewhere in the system. The necessary documentation to build and monitor the system consisted of a series of manuals along with forms that provided auditable evidence of the workings of the QMS. Quality Management (QM), in one form or another, has been in existence since the early 1900's. However, the question still remains: is it a good thing or just a bugbear? Many of the older style systems failed because they were designed by non-users, fiercely regulatory, restrictive and generally deemed to be an imposition. It is now considered important to foster a sense of ownership of the system by the people who use the system. The system's design must be tailored to best fit the purpose of the operations of the facility if maximum benefits to the organisation are to be gained.
Resumo:
Wheat is one of the major food crops in the world. It is Australia's largest crop and most important agricultural commodity. In Australia the crop is grown under rainfed conditions with inherently important regional environmental differences; wheat growing areas are characterized by winter dominant rainfall in southern and western Australia and summer rainfall in northern Australia. Maximizing yield potential across these diverse regions is dependent upon managing, either genetically or agronomically, those factors in the environment that limit yield. The potential of synthetic backcross lines (SBLs) to increase yield in the diverse agroecological zones of Australia was investigated. Significant yield advantages were found for many of the SBLs across diverse environments. Depending on the environment, the yield of the SBLs ranged from 8% to 30% higher than the best local check in Australia. Apart from adaptation to semiarid water stressed conditions, some SBLs were also found to be significantly higher yielding under more optimal (irrigated) conditions. The four testing environments were classified into two groups, with the northern and southern environments being in separate groups. An elite group of SBLs was identified that exhibited broad adaptation across all diverse Australian environments included in this study. Other SBLs showed specific adaptation to either northern or southern Australia. This study showed that SBLs are likely to provide breeders with the opportunity to significantly improve wheat yield beyond what was previously possible in a number of diverse production environments.
Resumo:
Simmonds introduced Colletotrichum acutatum in 1965, validated in 1968, with a broad concept, as demonstrated by the selection of several type specimens from a range of hosts. This has created some confusion in the species concept and identification of C. acutatum. There are no viable ex-type cultures of C. acutatum and furthermore there are no existing cultures of C. acutatum on Carica papaya from the type locality in south-east Queensland. The application of molecular phylogenetic studies to isolates of C. acutatum is only meaningful if the taxonomy is stable and species are properly named. In order to clarify the species concept of C. acutatum, an isolate of Colletotrichum acutatum from Carica papaya from Yandina in Southeast Queensland (Australia) is designated as an epitype. A detailed morphological description is provided. Phylogenies based on a combined ITS and beta-tubulin gene analysis indicate that C. acutatum bears close phylogenetic affinities to C. gloeosporioides and C. capsici. Results also indicate that C. acutatum is monophyletic and there is a close relationship between the epitype and other Australian C. acutatum isolates from Carica papaya. Molecular data, however did not provide further evidence to properly elucidate the taxonomie affinities of C. acutatum especially the holotype and epitype. Our studies indicate that given the complexity of the genus Colletotrichum, there is a need to check previously described type specimens and redesign neotypes where necessary in order to clarify taxonomie uncertainties.
Resumo:
Models are abstractions of reality that have predetermined limits (often not consciously thought through) on what problem domains the models can be used to explore. These limits are determined by the range of observed data used to construct and validate the model. However, it is important to remember that operating the model beyond these limits, one of the reasons for building the model in the first place, potentially brings unwanted behaviour and thus reduces the usefulness of the model. Our experience with the Agricultural Production Systems Simulator (APSIM), a farming systems model, has led us to adapt techniques from the disciplines of modelling and software development to create a model development process. This process is simple, easy to follow, and brings a much higher level of stability to the development effort, which then delivers a much more useful model. A major part of the process relies on having a range of detailed model tests (unit, simulation, sensibility, validation) that exercise a model at various levels (sub-model, model and simulation). To underline the usefulness of testing, we examine several case studies where simulated output can be compared with simple relationships. For example, output is compared with crop water use efficiency relationships gleaned from the literature to check that the model reproduces the expected function. Similarly, another case study attempts to reproduce generalised hydrological relationships found in the literature. This paper then describes a simple model development process (using version control, automated testing and differencing tools), that will enhance the reliability and usefulness of a model.
Resumo:
Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.
Resumo:
Performances of Pinus taxa were studied to 10 years of age in two trials in each of Misiones and Entre Rios provinces across the Mesopotamia region of Argentina. Taxa comprised 22 populations from sources in Argentina, Australia, Brazil and Zimbabwe including Pinus elliottii var. elliottii (Pee), Pinus caribaea var. hondurensis (Pch), their four, inter-specific hybrids (F-1, F-2 and backcrosses from F-1 to Pch and to Pee-all as broadly based bulks); other Pee and Pinus taeda (Pt) comprised narrower or unspecified bulks. Variable numbers of taxa were missing at each site. Mean survival across sites at age 10 years ranged 53.2-91.3% averaging 74.2%. Analysis of variance of plot means indicated population effect was statistically significant (p < 0.05) for all or most growth and quality traits at all sites. However, significant differences from the nominated check seedlot at the Entre Rios sites (Pee, Australia) were extremely rare, while quite common at the northern, Misiones sites (check seedlot a Pt population). In the Misiones trials, F-1, F-2 and both backcross hybrids showed better stem straightness than Pee and Pt from Argentina, generally with statistically significant differences (p < 0.05). Pt showed lowest forking scores (desirable). Taxon x environment interaction was statistically significant (p < 0.01) for growth traits only (p > 0.05). However, this interaction contributed an average of only 34.1% of the taxon variance suggesting a lack of practical importance. Taxa most suitable for deployment in the Mesopotamia region, Argentina are suggested.
Resumo:
* Plant response to drought is complex, so that traits adapted to a specific drought type can confer disadvantage in another drought type. Understanding which type(s) of drought to target is of prime importance for crop improvement. * Modelling was used to quantify seasonal drought patterns for a check variety across the Australian wheatbelt, using 123 yr of weather data for representative locations and managements. Two other genotypes were used to simulate the impact of maturity on drought pattern. * Four major environment types summarized the variability in drought pattern over time and space. Severe stress beginning before flowering was common (44% of occurrences), with (24%) or without (20%) relief during grain filling. High variability occurred from year to year, differing with geographical region. With few exceptions, all four environment types occurred in most seasons, for each location, management system and genotype. * Applications of such environment characterization are proposed to assist breeding and research to focus on germplasm, traits and genes of interest for target environments. The method was applied at a continental scale to highly variable environments and could be extended to other crops, to other drought-prone regions around the world, and to quantify potential changes in drought patterns under future climates.
Resumo:
The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.
Resumo:
Variation in strontium (Sr) and barium (Ba) within otoliths is invaluable to studies of fish diadromy. Typically, otolith Sr : Ca is positively related to salinity, and the ratios of Ba and Sr to calcium (Ca) vary in opposite directions in relation to salinity. In this study of jungle perch, Kuhlia rupestris, otolith Sr : Ca and Ba : Ca, however, showed the same rapid increase as late-larval stages transitioned directly from a marine to freshwater environment. This transition was indicated by a microstructural check mark on otoliths at 35–45 days age. As expected ambient Sr was lower in the fresh than the marine water, however, low Ca levels (0.4 mg L–1) of the freshwater resulted in the Sr : Ca being substantially higher than the marine water. Importantly, the otolith Sr : Ba ratio showed the expected pattern of a decrease from the marine to freshwater stage, illustrating that Sr : Ba provided a more reliable inference of diadromous behaviour based on prior expectations of their relationship to salinity, than did Sr : Ca. The results demonstrate that Ca variation in freshwaters can potentially be an important influence on otolith element : Ca ratios and that inferences of marine–freshwater habitat use from otolith Sr : Ca alone can be problematic without an understanding of water chemistry.