2 resultados para Cell surface density

em eResearch Archive - Queensland Department of Agriculture


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Listeria and Salmonella are important foodborne pathogens normally associated with the shrimp production chain. This study investigated the potential of Salmonella Typhimurium, Salmonella Senftenberg, and Listeria monocytogenes (Scott A and V7) to attach to and colonize shrimp carapace. Attachment and colonization of Listeria and Salmonella were demonstrated. Shrimp abdominal carapaces showed higher levels of bacterial attachment (P < 0.05) than did head carapaces. Listeria consistently exhibited greater attachment (P < 0.05) than did Salmonella on all surfaces. Chitinase activity of all strains was tested and found not to occur at the three temperatures (10, 25. and 37 degrees C) tested. The surface physicochemical properties of bacterial cells and shrimp carapace were Studied to determine their role in attachment and colonization. Salmonella had significantly (P < 0.05) more positive (-3.9 and -6.0 mV) cell surface charge than Listeria (-18 and -22.8 mV) had. Both bacterial species were found to be hydrophilic (<35%) when measured by the bacterial adherence to hydrocarbon method and by contact angle (theta) measurements (Listeria, 21.3 and 24.8 degrees, and Salmonella, 14.5 and 18.9 degrees). The percentage of cells retained by Pheryl-Sepharose was lower for Salmonella (12.8 to 14.8%) than it was for Listeria (26.5 to 31.4%). The shrimp carapace was found to be hydrophobic (theta = 74.5 degrees), and a significant (P < 0.05) difference in surface roughness between carapace types was noted. There was a linear correlation between bacterial cell Surface charge (r(2) = 0.95) and hydrophobicity (r(2) = 0.85) and initial attachment (P < 0.05) of Listeria and Salmonella to carapaces. However, the same properties Could not be related to subsequent colonization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Haemophilus parasuis is the causative agent of Glässer's disease. Up to now 15 serovars of H. parasuis have been identified, with significant differences existing in virulence between serovars. In this study, suppression subtractive hybridization (SSH) was used to identify the genetic difference between Nagasaki (H. parasuis serovar 5 reference strain, highly virulent) and SW114 (H. parasuis serovar 3 reference strain, non-virulent). A total of 191 clones were obtained from the SSH library. Using dot hybridization and PCR, 15 clones were identified containing fragments that were present in the Nagasaki genome while absent in the SW114 genome. Among these 15 fragments, three fragments (ssh1, ssh13, ssh15) encode cell surface-associated components; three fragments (ssh2, ssh5, ssh9) are associated with metabolism and stress response; one fragment (ssh8) is involved in assembly of fimbria and one fragment (ssh6) is a phage phi-105 ORF25-like protein. The remaining seven fragments are hypothetical proteins or unknown. Based on PCR analysis of the 15 serovar reference strains, eight fragments (ssh1, ssh2, ssh3, ssh6, ssh8, ssh10, ssh11 and ssh12) were found in three to five of most virulent serovars (1, 5, 10, 12, 13 and 14), zero to two in three moderately virulent serovars (2, 4 and 15), but absent in the low virulent serovar (8) and non-virulent serovars (3, 6, 7, 9 and 11). In vivo transcription fragments ssh1, ssh2, ssh8 and ssh12 were identified in total RNA samples extracted from experimental infected pig lung by RT-PCR. This study has provided some evidence of genetic differences between H. parasuis strains of different virulence.