6 resultados para Cauliflower.

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F2 population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2012, a project was initiated to assess if the soft rot disease of ginger in Australian fields was associated with pathogens other than Pythium myriotylum. Together with nine Pythium spp., ten isolates of a Pythium-like organism were also recovered from ginger with soft rot symptoms. These Pythium-like isolates were identified as Pythiogeton (Py.) ramosum based on its morphology and ITS sequences. In-vitro pathogenicity tests allowed confirmation of pathogenicity of Py. ramosum on excised carrot (Daucus carota), sweet potato (Ipomoea batatas) and potato (Solanum tubersum) tubers, although it was not pathogenic on excised ginger (Zingiber officinale) and radish (Raphanus sativus) rhizome/roots. In addition it was found to be pathogenic on bean (Phaseolus vulgaris), capsicum (Capsicum annuum) and cauliflower (Brassica oleracea var. botrytis) seedlings. This is the first record of Py. ramosum and its pathogenicity in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucosinolates are a group of sulphur-containing glycosides found in the plant order Brassicales which includes the Brassica vegetables such as broccoli, cabbage and cauliflower. When brought into contact with the plant enzymes, myrosinases, the glucosinolates break down releasing glucose and other products which serve principally in plant defence against herbivores. The most important of the products from a human nutritional viewpoint, are the isothiocyanates. These potent inducers of detoxifying enzymes bestow the distinct anti-cancer properties on these plants. Unique among tropical fruits, papaya is known to contain an abundance of one particular glucosinolate, glucotropaeolin. Other compounds that play a pivotal role in the chemical defence system of many plants are the cyanogenic glycosides. Cyanogenic glycosides are activated by plant enzymes in the event of pest attack, releasing the deterrent: toxic hydrogen cyanide. Papaya, in addition to glucosinolates, also contains low levels of cyanogenic glycosides, an unusual occurrence because it was assumed that the two classes of metabolites were mutually exclusive. Studies measuring the levels of both in the edible parts of the papaya fruit and other utilised tissues are discussed and considered in the context of potential human health ramifications. All rights reserved, Elsevier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spiders are thought to play a significant role in limiting pest outbreaks in agroecosystems such as vineyards, orchards and cotton. The diversity and impact of spiders in vegetable crops are less well understood, although there is evidence that predators may be important for suppression of lepidopteran pests in Brassica crops, particularly early in the season before parasitoids become established. Sampling was conducted in early season plantings of Brassicas in the Lockyer Valley (South East Queensland, Australia) in order to determine the most commonly occurring spider families. The most numerous were Theridiidae, which were more strongly associated with cauliflower and poorly associated with cabbage. The Lycosidae and Clubionidae/Miturgidae (formerly in the ‘catch-all’ family Clubionidae) also occurred commonly. Lycosidae (and to a lesser extent Salticidae) had above average abundance in Chinese cabbage and below average abundance in broccoli compared with average abundance for these spider families; Clubionidae/Miturgidae had above average abundance in cauliflower. Laboratory studies were then conducted to explore the predatory capacity of these three most commonly occurring spider families. All three were capable of feeding on larvae of the diamondback moth, Plutella xylostella (Linnaeus), and cabbage cluster caterpillar, Crocidolomia pavonana (Fabricius), under laboratory conditions. Theridiidae, which are thought to prey on small pests such as leafhoppers and aphids, were able to successfully attack larvae up to five times their body size. Predation rates varied from an average of 1.7 (SE = 0.47) (1.6 control corrected) larvae consumed over a 24 h period in the case of the Theridiidae, to 3.3 (SE = 0.60) larvae for the Clubionidae/Miturgidae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apart from morphology and genetic characteristics, species status of Pythium zingiberis and P. myriotylum may also be confirmed based on their pathogenicity and host range. An Australian putative P. zingiberis isolate and imported type isolates of P. myriotylum and P. zingiberis were subject to both in vitro and in vivo pathogenicity tests. In vitro tests were carried out on excised carrot, ginger, potato, radish, and sweet potato tuber/root sections, and on seeds and seedlings of cucumber, cauliflower, millet, rye, sweet corn, tomato, and wheat. In all assays conducted, the Australian isolate was found to be the most pathogenic, followed by type specimen of P. zingiberis (UOP 275), and then the type specimen P. myriotylum (CBS 254.70). An in vivo experiment on ginger plants at 35°C (with 10 h day light) in quarantine conditions showed that the ginger plants inoculated with the Australian isolate and also the type specimen of P. zingiberis died at 21 days after inoculation, whereas those inoculated with P. myriotylum CBS 254.70 were still green and healthy. Along with cardinal growth rate, the Australian isolate was confirmed to be closely related to P. zingiberis. This is also the first direct comparison in pathogenicity of P. zingiberis and P. myriotylum.