2 resultados para Cast-iron electrodes

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to identify the biochemical mechanism of phosphine toxicity and resistance, using Caenorhabditis elegans as a model organism. To date, the precise mode of phosphine action is unclear. In this report, we demonstrate the following dose-dependent actions of phosphine, in vitro: (1) reduction of ferric iron (Fe3+) to ferrous iron (Fe2+), (2) release of iron from horse ferritin, (3) and the peroxidation of lipid as a result of iron release from ferritin. Using in situ hybridization, we show that the ferritin genes of C. elegans, both ferritin-1 and ferritin-2, are expressed along the digestive tract with greatest expression at the proximal and distal ends. Basal expression of the ferritin-2 gene, as determined by quantitative PCR, is approximately 80 times that of ferritin-1. However, transcript levels of ferritin-1 are induced at least 20-fold in response to phosphine, whereas there is no change in the level of ferritin-2. This resembles the reported pattern of ferritin gene regulation by iron, suggesting that phosphine toxicity may be related to an increase in the level of free iron. Indeed, iron overload increases phosphine toxicity in C. elegans at least threefold. Moreover, we demonstrate that suppression of ferritin-2 gene expression by RNAi, significantly increases sensitivity to phosphine. This study identifies similarities between phosphine toxicity and iron overload and demonstrates that phosphine can trigger iron release from storage proteins, increasing lipid peroxidation, leading to cell injury and/or cell death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grain feeding low bodyweight, cast-for-age (CFA) sheep from pastoral areas of eastern Australia at the end of the growing season can enable critical carcass weight grades to be achieved and thus yield better economic returns. The aim of this work was to compare growth and carcass characteristics for CFA Merino ewes consuming either simple diets based on whole sorghum grain or commercial feed pellets. The experiment also compared various sources of additional nitrogen (N) for inclusion in sorghum diets and evaluated several introductory regimes. Seventeen ewes were killed initially to provide baseline carcass data and the remaining 301 ewes were gradually introduced to the concentrate diets over 14 days before being fed concentrates and wheaten hay ad libitum for 33 or 68 days. Concentrate treatments were: (i) commercial feed pellets, (ii) sorghum mix (SM; whole sorghum grain, limestone, salt and molasses) + urea and ammonium sulfate (SMU), (iii) SMU + whole cottonseed at 286 g/kg of concentrate dry matter (DM), (iv) SM + cottonseed meal at 139 g/kg of concentrate DM, (v) SMU + virginiamycin (20 mg/kg of concentrate) for the first 21 days of feeding, and (vi) whole cottonseed gradually replaced by SMU over the first 14 days of feeding. The target carcass weight of 18 kg was achieved after only 33 days on feed for the pellets and the SM + cottonseed meal diet. All other whole grain sorghum diets required between 33 and 68 days on feed to achieve the target carcass weight. Concentrates based on whole sorghum grain generally produced significantly (P < 0.05) lower carcass weight and fat score than pellets and this may have been linked to the significantly (P < 0.05) higher faecal starch concentrations for ewes consuming sorghum-based diets (270 v. 72 g/kg DM on day 51 of feeding for sorghum-based diets and pellets, respectively). Source of N in whole grain sorghum rations and special introductory regimes had no significant (P > 0.05) effects on carcass weight or fat score of ewes with the exception of carcass weight for SMU + whole cottonseed being significantly lower than SM + cottonseed meal at day 33. Ewes finished on all diets produced acceptable carcasses although muscle pH was high in all ewe carcasses (average 5.8 and 5.7 at 33 and 68 days, respectively). There were no significant (P > 0.05) differences between diets in concentrate DM intake, rumen fluid pH, meat colour score, fat colour score, eye muscle area, meat pH or meat temperature.