2 resultados para Carranza, Bartolomé de, 1503-1576-Biografías
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In classical weed biological control, assessing weed response to simulated herbivory is one option to assist in the prioritization of available agents and prediction of their potential efficacy. Previously reported simulated herbivory studies suggested that a specialist herbivore in the leaf-feeding guild is desirable as an effective biological control agent for cat's claw creeper Macfadyena unguis-cati (Bignoniaceae), an environmental weed that is currently a target for biological control. In this study, we tested (i) whether the results from glasshouse-based simulated herbivory can be used to prioritise potential biological control agents by evaluating the impact of a leaf-sucking tingid bug Carvalhotingis visenda (Drake & Hambleton) (Hemiptera: Tingidae) in quarantine; and (ii) the likely effectiveness of low- and high-densities of the leaf-sucking tingid after its release in the field. The results suggest that a single generation of C. visenda has the potential to reduce leaf chlorophyll content significantly, resulting in reduced plant height and leaf biomass. However, the impact of one generation of tingid herbivory on below-ground plant components, including the roots and tuber size and biomass, were not significant. These findings are consistent with results obtained from a simulated herbivory trial, highlighting the potential role of simulated herbivory studies in agent prioritisation.
Resumo:
Fiji leaf gall (FLG) is an important virally induced disease in Australian sugarcane. It is confined to southern canegrowing areas, despite its vector, the delphacid planthopper Perkinsiella saccharicida, occurring in all canegrowing areas of Queensland and New South Wales. This disparity between distributions could be a result of successful containment of the disease through quarantine and/or geographical barriers, or because northern Queensland populations of Perkinsiella may be poorer vectors of the disease. These hypotheses were first tested by investigating variation in the ITS2 region of the rDNA fragment among eastern Australian and overseas populations of Perkinsiella. The ITS2 sequences of the Western Australian P. thompsoni and the Fijian P. vitiensis were distinguishable from those of P. saccharicida and there was no significant variation among the 26 P. saccharicida populations. Reciprocal crosses of a northern Queensland and a southern Queensland population of P. saccharicida were fertile, so they may well be conspecific. Single vector transmission experiments showed that a population of P. saccharicida from northern Queensland had a higher vector competency than either of two southern Queensland populations. The frequency of virus acquisition in the vector populations was demonstrated to be important in the vector competency of the planthopper. The proportion of infected vectors that transmitted the virus to plants was not significantly different among the populations tested. This study shows that the absence of FLG from northern Queensland is not due to a lack of vector competency of the northern population of P. saccharicida.