159 resultados para Carbon sequestration - Pasture - Grazing management

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bio-economic modelling framework (GRASP-ENTERPRISE) was used to assess the implications of retaining woody regrowth for carbon sequestration on a case study beef grazing property in northern Australia. Five carbon farming scenarios, ranging from 0% to 100% of the property regrowth retained for carbon sequestration, were simulated over a 20-year period (1993–2012). Dedicating regrowth on the property for carbon sequestration reduced pasture (up to 40%) and herd productivity (up to 20%), and resulted in financial losses (up to 24% reduction in total gross margin). A net carbon income (income after grazing management expenses are removed) of $2–4 per t CO2-e was required to offset economic losses of retaining regrowth on a moderately productive (~8 ha adult equivalent–1) property where income was from the sale of weaners. A higher opportunity cost ($ t–1 CO2-e) of retaining woody regrowth is likely for feeder steer or finishing operations, with improved cattle prices, and where the substantial transaction and reporting costs are included. Although uncertainty remains around the price received for carbon farming activities, this study demonstrated that a conservatively stocked breeding operation can achieve positive production, environmental and economic outcomes, including net carbon stock. This study was based on a beef enterprise in central Queensland’s grazing lands, however, the approach and learnings are expected to be applicable across northern Australia where regrowth is present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steer liveweight gains were measured in an extensive grazing study conducted in a Heteropogon contortus (black speargrass) pasture in central Queensland between 1988 and 2001. Treatments included a range of stocking rates in native pastures, legume-oversown native pasture and animal diet supplement/spring-burning pastures. Seasonal rainfall throughout this study was below the long-term mean. Mean annual pasture utilisation ranged from 13 to 61%. Annual liveweight gains per head in native pasture were highly variable among years and ranged from a low of 43 kg/steer at 2 ha/steer to a high of 182 kg/steer at 8 ha/steer. Annual liveweight gains were consistently highest at light stocking and decreased with increasing stocking rate. Annual liveweight gain per hectare increased linearly with stocking rate. These stocking rate trends were also evident in legume-oversown pastures although both the intercept and slope of the regressions for legume-oversown pastures were higher than that for native pasture. The highest annual liveweight gain for legume-oversown pasture was 221 kg/steer at 4 ha/steer. After 13 years, annual liveweight gain per unit area occurred at the heaviest stocking rate despite deleterious changes in the pasture. Across all years, the annual liveweight advantage for legume-oversown pastures was 37 kg/steer. Compared with native pasture, changes in annual liveweight gain with burning were variable. It was concluded that cattle productivity is sustainable when stocking rates are maintained at 4 ha/steer or lighter (equivalent to a utilisation rate around 30%). Although steer liveweight gain occurred at all stocking rates and economic returns were highest at heaviest stocking rates, stocking rates heavier than 4 ha/steer are unsustainable because of their long-term impact on pasture productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diet selected in autumn by steers fistulated at the oesophageous was studied in a subset of treatments in an extensive grazing study conducted in a Heteropogon contortus pasture in central Queensland between 1988 and 2001. These treatments were a factorial array of three stocking rates (4, 3 and 2 ha/steer) and three pasture types (native pasture, legume-oversown native pasture and animal diet supplement/spring-burning native pasture). Seasonal rainfall throughout this study was below the long-term mean and mean annual pasture utilisation ranged from 30 to 61%. Steers consistently selected H. contortus with levels decreasing from 47 to 18% of the diet as stocking rate increased from 4 ha/steer to 2 ha/steer. Stylosanthes scabra cv. Seca was always selected in legume-oversown pastures with diet composition varying from 35 to 66% despite its plant density increasing from 7 to 65 plants/m(2) and pasture composition from 20 to 50%. Steers also selected a diet containing Chrysopogon fallax, forbs and sedges in higher proportions than they were present in the pasture. Greater availability of the intermediate grasses Chloris divaricata and Eragrostis spp. was associated with increased stocking rates. Bothriochloa bladhii was seldom selected in the diet, especially when other palatable species were present in the pasture, despite B. bladhii often being the major contributor to total pasture yield. It was concluded that a stocking rate of 4 ha/steer will maintain the availability of H. contortus in the pasture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of Heteropogon contortus and Stylosanthes scabra cv. Seca populations were studied in a subset of treatments in an extensive grazing study conducted in central Queensland between 1988 and 2001. These treatments were 4 stocking rates in native pasture and 2 of these stocking rates in legume oversown and supplement/spring burning treatments. For the 1999-2000 summer, population data for H. contortus in 5 of these native pasture and supplement/burning treatments were compared with those for an additional burnt treatment. Seasonal rainfall throughout this study was below the long-term mean and mean annual pasture utilisation ranged from 24 to 61%. Increasing stocking rate from 5 to 2 ha/steer in native pasture reduced H. contortus plant density. Increasing stocking rate reduced seedling recruitment as a result of its effect on soil seedbanks. Seedling recruitment was the major determinant of change in plant density, although some individual H. contortus plants did survive throughout the study. Burning in spring 1999, particularly at light stocking rate, promoted seedling recruitment above that in both unburnt native and legume oversown pasture and resulted in increased H. contortus plant density. In the legume oversown treatments, S. scabra cv. Seca density increased rapidly from 15 plants/m2 in 1988 to 140 plants/m2 in 2001 following a lag phase between 1988 and 1993. This increased S. scabra density was associated with an eventual decline in H. contortus plant density through reduced seedling recruitment. It was concluded that H. contortus population density is sustainable at stocking rates of 4 and 5 ha/steer (30% pasture utilisation) and that spring burning at light stocking rate can promote H. contortus populations. Increasing densities of S. scabra need to be managed to prevent its dominance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plantings of mixed native species (termed 'environmental plantings') are increasingly being established for carbon sequestration whilst providing additional environmental benefits such as biodiversity and water quality. In Australia, they are currently one of the most common forms of reforestation. Investment in establishing and maintaining such plantings relies on having a cost-effective modelling approach to providing unbiased estimates of biomass production and carbon sequestration rates. In Australia, the Full Carbon Accounting Model (FullCAM) is used for both national greenhouse gas accounting and project-scale sequestration activities. Prior to undertaking the work presented here, the FullCAM tree growth curve was not calibrated specifically for environmental plantings and generally under-estimated their biomass. Here we collected and analysed above-ground biomass data from 605 mixed-species environmental plantings, and tested the effects of several planting characteristics on growth rates. Plantings were then categorised based on significant differences in growth rates. Growth of plantings differed between temperate and tropical regions. Tropical plantings were relatively uniform in terms of planting methods and their growth was largely related to stand age, consistent with the un-calibrated growth curve. However, in temperate regions where plantings were more variable, key factors influencing growth were planting width, stand density and species-mix (proportion of individuals that were trees). These categories provided the basis for FullCAM calibration. Although the overall model efficiency was only 39-46%, there was nonetheless no significant bias when the model was applied to the various planting categories. Thus, modelled estimates of biomass accumulation will be reliable on average, but estimates at any particular location will be uncertain, with either under- or over-prediction possible. When compared with the un-calibrated yield curves, predictions using the new calibrations show that early growth is likely to be more rapid and total above-ground biomass may be higher for many plantings at maturity. This study has considerably improved understanding of the patterns of growth in different types of environmental plantings, and in modelling biomass accumulation in young (<25. years old) plantings. However, significant challenges remain to understand longer-term stand dynamics, particularly with temporal changes in stand density and species composition. © 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rainfall variability is a major challenge to sustainable management in semi-arid rangelands. We present empirical evidence from a large, long-term grazing trial in northern Australia on the relative performance of constant heavy stocking, moderate stocking at long-term carrying capacity and variable stocking in coping with climate variability over a range of rainfall years. Moderate stocking gave good economic returns, maintained pasture condition and minimised soil loss and runoff. Heavy stocking was neither sustainable nor profitable in the long term. Variable stocking generally performed well but suffered economic loss and some decline in pasture condition in the transition from good to poor years. Importantly, our results show that sustainable and profitable management are compatible in semi-arid rangelands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rainfall variability is a major challenge to sustainable grazing management in northern Australia, with management often complicated further by large, spatially-heterogeneous paddocks. This paper presents the latest grazing research and associated bio-economic modelling from northern Australia and assesses the extent to which current recommendations to manage for these issues are supported. Overall, stocking around the safe long-term carrying capacity will maintain land condition and maximise long-term profitability. However, stocking rates should be varied in a risk-averse manner as pasture availability varies between years. Periodic wet-season spelling is also essential to maintain pasture condition and allow recovery of overgrazed areas. Uneven grazing distributions can be partially managed through fencing, providing additional water-points and in some cases patch-burning, although the economics of infrastructure development are extremely context-dependent. Overall, complex multi-paddock grazing systems do not appear justified in northern Australia. Provided the key management principles outlined above are applied in an active, adaptive manner, acceptable economic and environmental outcomes will be achieved irrespective of the grazing system applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a study to identify those factors which control the persistence of the Subtropical legume Stylosanthes hippocampoides, formerly S. guianensis cv. Oxley (fine stem stylo). The dynamics of S. hippocampoides populations was recorded in permanent quadrats at 2 stocking rates in a grazing study conducted between 1987 and 1992 in south-eastern Queensland. Density of mature plants fluctuated between 10 and 60 plants/m(2) during the 5 years with the major contributing factors being variations in seedling recruitment and survival, which, in turn, reflected the size of the soil seed bank and seasonal rainfall. Plant density was consistently higher at the lower stocking rate of 1 beast/1.5 ha compared with 1 beast/1 ha; however, the effect of stocking rate was minor compared with fluctuation due to seasonal variation in rainfall. The maximum life span of the original plants exceeded 5 years, while the survival of seedling cohorts was strongly impacted by seasonal rainfall. Total exclosure from grazing during summer increased the size of the soil seed bank although a precise time period during summer was not identified, while grazing at the lower stocking pressure produced the same outcome. It was concluded that the large seasonal variation that occurs in S. hippocampoides density is driven by large seasonal variation in seedling recruitment, which, in turn, is influenced by the size of the soil seed bank.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Project aims to assist beef producers make decisions about the most suitable grazing systems for their properties by providing accurate and impartial information in an easy to understand format.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grazing by domestic livestock is one of the most widespread uses of the rangelands of Australia. There is limited information on the effects of grazing by domestic livestock on the vertebrate fauna of Australia and the establishment of a long-term grazing experiment in north-eastern Queensland at Wambiana provided an opportunity to attempt an examination of the changes in vertebrate fauna as a consequence of the manipulation of stocking rates. The aim was to identify what the relative effects of vegetation type, stocking rate and other landscape-scale environmental factors were on the patterns recorded. Sixteen 1-ha sites were established within three replicated treatments (moderate, heavy and variable stocking rates). The sites were sampled in the wet and dry seasons in 1999-2000 (T-0) and again in 2003-04 (T-1). All paddocks of the treatments were burnt in 1999. Average annual rainfall declined markedly between the two sampling periods, which made interpretation of the data difficult. A total of 127 species of vertebrate fauna comprising five amphibian, 83 bird, 27 reptile and 12 mammal species were recorded. There was strong separation in faunal composition from T-0 to T-1 although changes in mean compositional dissimilarity between the grazing stocking rate treatments were less well defined. There was a relative change in abundance of 24 bird, four mammal and five reptile species from T-0 to T-1. The generalised linear modelling identified that, in the T-1 data, there was significant variation in the abundance of 16 species explained by the grazing and vegetation factors. This study demonstrated that vertebrate fauna assemblage did change and that these changes were attributable to the interplay between the stocking rates, the vegetation types on the sites surveyed, the burning of the experimental paddocks and the decrease in rainfall over the course of the two surveys. It is recommended that the experiment is sampled again but that the focus should be on a rapid survey of abundant taxa (i.e. birds and reptiles) to allow an increase in the frequency of sampling and replication of the data. This would help to articulate more clearly the trajectory of vertebrate change due to the relative effects of stocking rates compared with wider landscape environmental changes. Given the increasing focus on pastoral development in northern Australia, any opportunity to incorporate the collection of data on biodiversity into grazing manipulation experiments should be taken for the assessment of the effects of land management on faunal species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although agriculture generates 16% of Australia's greenhouse gas emissions, it also has the potential to sequester large quantities of emissions through land use management options such as agroforestry. Whilst there is an extensive amount of agroforestry literature, little has been written on the economic consequences of adopting silvopastoral systems in northern Australia. This paper reports the financial viability of adopting complementary agroforestry systems in the low rainfall region of northern Australia. The analysis incorporates the dynamic tradeoffs between tree and pasture growth, likely forest product yields, carbon sequestration and livestock methane emissions in a bioeconomic model. The results suggest there are financial benefits for landholders who integrate complementary agroforestry activities into existing grazing operations at even modest carbon prices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On-going, high-profile public debate about climate change has focussed attention on how to monitor the soil organic carbon stock (C(s)) of rangelands (savannas). Unfortunately, optimal sampling of the rangelands for baseline C(s) - the critical first step towards efficient monitoring - has received relatively little attention to date. Moreover, in the rangelands of tropical Australia relatively little is known about how C(s) is influenced by the practice of cattle grazing. To address these issues we used linear mixed models to: (i) unravel how grazing pressure (over a 12-year period) and soil type have affected C(s) and the stable carbon isotope ratio of soil organic carbon (delta(13)C) (a measure of the relative contributions of C(3) and C(4) vegetation to C(s)); (ii) examine the spatial covariation of C(s) and delta(13)C; and, (iii) explore the amount of soil sampling required to adequately determine baseline C(s). Modelling was done in the context of the material coordinate system for the soil profile, therefore the depths reported, while conventional, are only nominal. Linear mixed models revealed that soil type and grazing pressure interacted to influence C(s) to a depth of 0.3 m in the profile. At a depth of 0.5 m there was no effect of grazing on C(s), but the soil type effect on C(s) was significant. Soil type influenced delta(13)C to a soil depth of 0.5 m but there was no effect of grazing at any depth examined. The linear mixed model also revealed the strong negative correlation of C(s) with delta(13)C, particularly to a depth of 0.1 m in the soil profile. This suggested that increased C(s) at the study site was associated with increased input of C from C(3) trees and shrubs relative to the C(4) perennial grasses; as the latter form the bulk of the cattle diet, we contend that C sequestration may be negatively correlated with forage production. Our baseline C(s) sampling recommendation for cattle-grazing properties of the tropical rangelands of Australia is to: (i) divide the property into units of apparently uniform soil type and grazing management; (ii) use stratified simple random sampling to spread at least 25 soil sampling locations about each unit, with at least two samples collected per stratum. This will be adequate to accurately estimate baseline mean C(s) to within 20% of the true mean, to a nominal depth of 0.3 m in the profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of grazing management on total soil organic carbon (SOC) and soil total nitrogen (TN) in tropical grasslands is an issue of considerable ecological and economic interest. Here we have used linear mixed models to investigate the effect of grazing management on stocks of SOC and TN in the top 0.5 m of the soil profile. The study site was a long-term pasture utilization experiment, 26 years after the experiment was established for sheep grazing on native Mitchell grass (Astrebla spp.) pasture in northern Australia. The pasture utilization rates were between 0% (exclosure) and 80%, assessed visually. We found that a significant amount of TN had been lost from the top 0.1 m of the soil profile as a result of grazing, with 80% pasture utilization resulting in a loss of 84 kg ha−1 over the 26-year period. There was no significant effect of pasture utilization rate on TN when greater soil depths were considered. There was no significant effect of pasture utilization rate on stocks of SOC and soil particulate organic carbon (POC), or the C:N ratio at any depth; however, visual trends in the data suggested some agreement with the literature, whereby increased grazing pressure appeared to: (i) decrease SOC and POC stocks; and, (ii) increase the C:N ratio. Overall, the statistical power of the study was limited, and future research would benefit from a more comprehensive sampling scheme. Previous studies at the site have found that a pasture utilization rate of 30% is sustainable for grazing production on Mitchell grass; however, given our results, we conclude that N inputs (possibly through management of native N2-fixing pasture legumes) should be made for long-term maintenance of soil health, and pasture productivity, within this ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The grazing lands of northern Australia contain a substantial soil organic carbon (SOC) stock due to the large land area. Manipulating SOC stocks through grazing management has been presented as an option to offset national greenhouse gas emissions from agriculture and other industries. However, research into the response of SOC stocks to a range of management activities has variously shown positive, negative or negligible change. This uncertainty in predicting change in SOC stocks represents high project risk for government and industry in relation to SOC sequestration programs. In this paper, we seek to address the uncertainty in SOC stock prediction by assessing relationships between SOC stocks and grazing land condition indicators. We reviewed the literature to identify land condition indicators for analysis and tested relationships between identified land condition indicators and SOC stock using data from a paired-site sampling experiment (10 sites). We subsequently collated SOC stock datasets at two scales (quadrat and paddock) from across northern Australia (329 sites) to compare with the findings of the paired-site sampling experiment with the aim of identifying the land condition indicators that had the strongest relationship with SOC stock. The land condition indicators most closely correlated with SOC stocks across datasets and analysis scales were tree basal area, tree canopy cover, ground cover, pasture biomass and the density of perennial grass tussocks. In combination with soil type, these indicators accounted for up to 42% of the variation in the residuals after climate effects were removed. However, we found that responses often interacted with soil type, adding complexity and increasing the uncertainty associated with predicting SOC stock change at any particular location. We recommend that caution be exercised when considering SOC offset projects in northern Australian grazing lands due to the risk of incorrectly predicting changes in SOC stocks with change in land condition indicators and management activities for a particular paddock or property. Despite the uncertainty for generating SOC sequestration income, undertaking management activities to improve land condition is likely to have desirable complementary benefits such as improving productivity and profitability as well as reducing adverse environmental impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Poor land condition resulting from unsustainable grazing practices can reduce enterprise profitability and increase water, sediment and associated nutrient runoff from properties and catchments. This paper presents the results of a 6 year field study that used a series of hillslope flume experiments to evaluate the impact of improved grazing land management (GLM) on hillslope runoff and sediment yields. The study was carried out on a commercial grazing property in a catchment draining to the Burdekin River in northern Australia. During this study average ground cover on hillslopes increased from ~35% to ~75%, although average biomass and litter levels are still relatively low for this landscape type (~60 increasing to 1100 kg of dry matter per hectare). Pasture recovery was greatest on the upper and middle parts of hillslopes. Areas that did not respond to the improved grazing management had <10% cover and were on the lower slopes associated with the location of sodic soil and the initiation of gullies. Comparison of ground cover changes and soil conditions with adjacent properties suggest that grazing management, and not just improved rainfall conditions, were responsible for the improvements in ground cover in this study. The ground cover improvements resulted in progressively lower runoff coefficients for the first event in each wet season, however, runoff coefficients were not reduced at the annual time scale. The hillslope annual sediment yields declined by ~70% on two out of three hillslopes, although where bare patches (with <10% cover) were connected to gullies and streams, annual sediment yields increased in response to higher rainfall in latter years of the study. It appears that bare patches are the primary source areas for both runoff and erosion on these hillslopes. Achieving further reductions in runoff and erosion in these landscapes may require management practices that improve ground cover and biomass in bare areas, particularly when they are located adjacent to concentrated drainage lines.