3 resultados para Calliphoridae
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The Australian sheep blowfly, Lucilia cuprina initiates more than 85% of fly strikes on sheep in Australia with an estimated average annual cost of A$280 million to the Australian wool industry. LuciTrap® is a commercially available, selective trap for L. cuprina consisting of a plastic bucket with multiple fly entry cones and a synthetic attractant. The impact of LuciTrap on populations of L. cuprina on sheep properties in five Australian states was evaluated by comparing L. cuprina populations on paired properties with and without LuciTraps over seasons when significant fly populations could be expected. Twenty-four comparisons (trials) were conducted over four years. During times of ‘higher fly density’ (when the 48 h geometric mean of trap catches on the control property was greater than five L. cuprina), the overall geometric mean trap catches for control and trapped properties differed significantly (P<0.001) with mean trap catches of 19.4 and 7.74 L. cuprina respectively. The selectivity of the LuciTrap was confirmed with 59% of all trapped flies being L. cuprina. Chrysomya spp. and Calliphora spp. constituted 9.3% and 1.1% of the catches with a variety of other flies (mainly Sarcophagidae and Muscidae) providing the remainder (31%). L. sericata was only trapped in Tasmania and made up 7.7% of the Lucilia spp. catch in this State. Seventy-two percent of the trapped L. cuprina were female. The deployment of LuciTrap on sheep properties at one trap per 100 sheep from the beginning of the anticipated fly season suppressed the populations of L. cuprina by 60% compared to matched control properties. The LuciTrap is a selective and easy to use fly trap and constitutes an effective, non-insecticidal tool for use in integrated management programs for L. cuprina.
Resumo:
Solvent extracts of cultures of the fungus Paecilomyces varioti are toxic to sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Different components of the culture extracts were isolated and bioassayed with L. cuprina. The component with most toxicity was purified and identified from its proton magnetic resonance spectrum as viriditoxin, a known antibiotic metabolite of the fungus. The insecticidal properties of viriditoxin were then evaluated. Mean LCso values for first instar larvae of organophosphate susceptible and resistant strains of L. cuprina were 7.5 and 8.4 ppm respectively. Pilot implant trials in sheep demonstrated that the compound provided protection for 9-17 weeks against both strains of L. cuprina. No adverse effects on the trial sheep were detected.
Resumo:
The Old World screwworm fly (OWS), Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), is a myiasis-causing blowfly of major concern for both animals and humans. Surveillance traps are used in several countries for early detection of incursions and to monitor control strategies. Examination of surveillance trap catches is time-consuming and is complicated by the presence of morphologically similar flies that are difficult to differentiate from Ch. bezziana, especially when the condition of specimens is poor. A molecular-based method to confirm or refute the presence of Ch. bezziana in trap catches would greatly simplify monitoring programmes. A species-specific real-time polymerase chain reaction (PCR) assay was designed to target the ribosomal DNA internal transcribed spacer 1 (rDNA ITS1) of Ch. bezziana. The assay uses both species-specific primers and an OWS-specific Taqman MGB probe. Specificity was confirmed against morphologically similar and related Chrysomya and Cochliomyia species. An optimal extraction protocol was developed to process trap catches of up to 1000 flies and the assay is sensitive enough to detect one Ch. bezziana in a sample of 1000 non-target species. Blind testing of 29 trap catches from Australia and Malaysia detected Ch. bezziana with 100% accuracy. The probability of detecting OWS in a trap catch of 50 000 flies when the OWS population prevalence is low (one in 1000 flies) is 63.6% for one extraction. For three extractions (3000 flies), the probability of detection increases to 95.5%. The real-time PCR assay, used in conjunction with morphology, will greatly increase screening capabilities in surveillance areas where OWS prevalence is low.