10 resultados para Calcium (cellular)
em eResearch Archive - Queensland Department of Agriculture
Resumo:
It is widely acknowledged that changes in intracellular calcium ion (Ca2+) concentration provide dynamic signals that control a plethora of cellular processes, including triggering and mediating host defence mechanisms. In this study, quantitative real-time PCR was used to analyse gene expression of 14 Ca2+ signalling proteins in skin obtained from high tick-resistant (HR) and low tick-resistant (LR) cattle following artificial challenge with cattle tick (Rhipicephalus (Boophilus) microplus). Up-regulation of numerous genes was observed in both HR and LR skin following tick challenge, however substantially higher transcription activation was found in HR tissue. The elevated expression in HR skin of specific Ca2+ signalling genes such as AHNAK, CASQ, IL2, NFAT2CIP and PLCG1 may be related to host resistance. Our data suggest that Ca2+ and its associated proteins might play an important role in host response to ticks and that further investigation is warranted.
Resumo:
The fatty acids of 18 strains of Bordetella avium, 3 strains of Alcaligenes faecalis, 5 strains of Bordetella bronchiseptica, and 12 strains of a B. avium-like organism were examined by gas chromatography-mass spectrometry. The presence of a significant amount of the acid 2-OH C14:0 characterized B. avium and the B. avium-like organism. B. avium and the B. avium-like organism differed in their relative concentrations of C16:1 and 3-OH C14:0 acids. B. bronchiseptica and A. faecalis were distinguishable by comparison of the relative concentrations of C18:0 and C18:1 acids.
Resumo:
Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 35 +/- A 2A degrees C) had no effect on the cellular stages in root formation of the Slash x Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25A degrees C and slowest at 15A degrees C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (> 80%) but reduced to 59% at 35A degrees C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.
Resumo:
Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 352C) had no effect on the cellular stages in root formation of the Slash * Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25C and slowest at 15C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (>80%) but reduced to 59% at 35C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.
Resumo:
Vegetative propagation programs internationally are affected by the significant decline of rooting success as trees mature. This study compared the cellular stages of root formation in stem cuttings from 15-week-old (juvenile) and 9-y-old (mature) stock plants of the slash x Caribbean pine hybrid (Pinus elliottii var. elliottii x P. caribaea van hondurensis). The cellular stages of root formation were the same in both juvenile and mature cuttings, beginning with cell divisions of the vascular cambium forming callus tissue. Within the callus, tracheids differentiated and elongated to form root primordia. Roots in juvenile cuttings developed faster than those in mature cuttings and the juvenile cuttings had a much higher rooting percent at the end of the study (92% and 26% respectively). Cuttings of the two juvenile genotypes had more primary roots (5.5 and 3.3) than the three mature genotypes (0.96, 0.18 and 0.07). The roots of juvenile cuttings were more evenly distributed around the basal circumference when compared with those on cuttings from the mature genotypes. Further work is needed to improve understanding of physiological changes with maturation so that the rooting success and the speed of development in cuttings from mature stock plants can be optimised, hence improving genetic gain.
Resumo:
Cellular and molecular interactions of rhabdoviruses with their plant hosts and insect vectors.
Resumo:
As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
Resumo:
A rationally designed two-step synthesis of silica vesicles is developed with the formation of vesicular structure in the first step and fine control over the entrance size by tuning the temperature in the second step. The silica vesicles have a uniform size of ≈50 nm with excellent cellular uptake performance. When the entrance size is equal to the wall thickness, silica vesicles after hydrophobic modification show the highest loading amount (563 mg/g) towards Ribonuclease A with a sustained release behavior. Consequently, the silica vesicles are excellent nano-carriers for cellular delivery applications of therapeutical biomolecules.
Resumo:
Variation in strontium (Sr) and barium (Ba) within otoliths is invaluable to studies of fish diadromy. Typically, otolith Sr : Ca is positively related to salinity, and the ratios of Ba and Sr to calcium (Ca) vary in opposite directions in relation to salinity. In this study of jungle perch, Kuhlia rupestris, otolith Sr : Ca and Ba : Ca, however, showed the same rapid increase as late-larval stages transitioned directly from a marine to freshwater environment. This transition was indicated by a microstructural check mark on otoliths at 35–45 days age. As expected ambient Sr was lower in the fresh than the marine water, however, low Ca levels (0.4 mg L–1) of the freshwater resulted in the Sr : Ca being substantially higher than the marine water. Importantly, the otolith Sr : Ba ratio showed the expected pattern of a decrease from the marine to freshwater stage, illustrating that Sr : Ba provided a more reliable inference of diadromous behaviour based on prior expectations of their relationship to salinity, than did Sr : Ca. The results demonstrate that Ca variation in freshwaters can potentially be an important influence on otolith element : Ca ratios and that inferences of marine–freshwater habitat use from otolith Sr : Ca alone can be problematic without an understanding of water chemistry.