3 resultados para Cadeias de markov
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Many fisheries worldwide have adopted vessel monitoring systems (VMS) for compliance purposes. An added benefit of these systems is that they collect a large amount of data on vessel locations at very fine spatial and temporal scales. This data can provide a wealth of information for stock assessment, research, and management. However, since most VMS implementations record vessel location at set time intervals with no regard to vessel activity, some methodology is required to determine which data records correspond to fishing activity. This paper describes a probabilistic approach, based on hidden Markov models (HMMs), to determine vessel activity. A HMM provides a natural framework for the problem and, by definition, models the intrinsic temporal correlation of the data. The paper describes the general approach that was developed and presents an example of this approach applied to the Queensland trawl fishery off the coast of eastern Australia. Finally, a simulation experiment is presented that compares the misallocation rates of the HMM approach with other approaches.
Resumo:
Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.
Resumo:
Many aquatic species are linked to environmental drivers such as temperature and salinity through processes such as spawning, recruitment and growth. Information is needed on how fished species may respond to altered environmental drivers under climate change so that adaptive management strategies can be developed. Barramundi (Lates calcarifer) is a highly prized species of the Indo-West Pacific, whose recruitment and growth is driven by river discharge. We developed a monthly age- and length-structured population model for barramundi. Monte Carlo Markov Chain simulations were used to explore the population's response to altered river discharges under modelled total licenced water abstraction and projected climate change, derived and downscaled from Global Climate Model A1FI. Mean values of exploitable biomass, annual catch, maximum sustainable yield and spawning stock size were significantly reduced under scenarios where river discharge was reduced; despite including uncertainty. These results suggest that the upstream use of water resources and climate change have potential to significantly reduce downstream barramundi stock sizes and harvests and may undermine the inherent resilience of estuarine-dependent fisheries. © 2012 CSIRO.