17 resultados para CONTRIBUTES
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The significance of cannibalism in the diet of juvenile pond-cultured blue swimmer crabs (Portunus pelagicus (L.)) was investigated using dual stable isotope analysis of carbon and nitrogen. In a laboratory feeding experiment, δ15N demonstrated a constant trophic shift (Δδ15N ≈+ 1.6‰), and therefore seemed to be a reliable indicator for assessing trophic position for P. pelagicus. This agrees with previously reported trends. Difference in growth rate did not seem to influence δ15N values. In contrast, δ13C did not display consistent shifts between trophic levels (range of Δδ13C: + 1 to + 1.7‰). The results from the pond experiment showed that larger individuals had a more enriched δ15N than smaller individuals, which, when compared to the results from the laboratory experiment, indicates that larger individuals were at a higher trophic level. This is most likely due to cannibalism prevailing in the pond rather than a direct result of faster growth rate. Cannibalistic behaviour might further increase growth, resulting in the observed positive correlation between size and δ15N.
Resumo:
The first larval instar has been identified as a critical stage for population mortality in Lepidoptera, yet due to the body size of these larvae, the factors that contribute to mortality under field conditions are still not clear. Dispersal behaviour has been suggested as a significant, but ignored factor contributing to mortality in first-instar lepidopteran larvae. The impact that leaving the host plant has on the mortality rate of Helicoverpa armigera neonates was examined in field crops and laboratory trials. In this study the following are examined: (1) the effects of soil surface temperature, and the level of shade within the crop, on the mortality of neonates on the soil after dropping off from the host plant; (2) the percentage of neonates that dropped off from a host plant and landed on the soil; and (3) the effects of exposure to different soil surface temperatures on the development and mortality of neonates. The findings of this study showed that: (1) on the soil, surface temperatures above 43°C were lethal for neonates, and exposure to these temperatures contributed greatly to the overall mortality rate observed; however, the fate of neonates on the soil varied significantly depending on canopy closure within the crop; (2) at least 15% of neonates dropped off from the host plant and landed on the soil, meaning that the proportion of neonates exposed to these condition is not trivial; and (3) 30 min exposure to soil surface temperatures approaching the lethal level (>43°C) has no significant negative effects on the development and mortality of larvae through to the second instar. Overall leaving the plant through drop-off contributes to first-instar mortality in crops with open canopies; however, survival of neonates that have lost contact with a host plant is possible, and becomes more likely later in the crop growing season.
Resumo:
The enemy release hypothesis predicts that native herbivores will either prefer or cause more damage to native than introduced plant species. We tested this using preference and performance experiments in the laboratory and surveys of leaf damage caused by the magpie moth Nyctemera amica on a co-occuring native and introduced species of fireweed (Senecio) in eastern Australia. In the laboratory, ovipositing females and feeding larvae preferred the native S. pinnatifolius over the introduced S. madagascariensis. Larvae performed equally well on foliage of S. pinnatifolius and S. madagascariensis: pupal weights did not differ between insects reared on the two species, but growth rates were significantly faster on S. pinnatifolius. In the field, foliage damage was significantly greater on native S. pinnatifolius than introduced S. madagascariensis. These results support the enemy release hypothesis, and suggest that the failure of native consumers to switch to introduced species contributes to their invasive success. Both plant species experienced reduced, rather than increased, levels of herbivory when growing in mixed populations, as opposed to pure stands in the field; thus, there was no evidence that apparent competition occurred.
Resumo:
The potential for fertiliser use in Lockyer Valleys intensive vegetable production to impact on the Moreton Bay Waterways (MBW) is not well defined. Notwithstanding nutrient runoff through soil erosion of agricultural lands has been identified as a process that significantly contributes artificial fertiliser to the MBW (SEQ Healthy Waterways Draft Strategy 2006). In order to better understand this issue the present study undertakes a nutrient mass balance to evaluate nitrogen use efficiency in the intensive horticultural industry of the Lockyer Valley.
Resumo:
The Great Barrier Reef (GBR) is the largest reef system in the world; it covers an area of approximately 2,225,000 km² in the northern Queensland continental shelf. There are approximately 750 reefs that exist within 40 km of the Queensland coast. Recent research has identified that poor water quality is having negative impacts on the GBR (Haynes et al. 2007). The Fitzroy Basin covers 143,000 km² and is the largest catchment draining into the GBR as well as being one of the largest catchments in Australia (Karfs et al. 2009). The Burdekin Catchment is the second largest catchment entering into the GBR and covers 133,432 km².The prime determinant for the changes in water quality entering into the GBR have been attributed to grazing, with beef production the largest single land use industry comprising 90% of the land area (Karfs et al. 2009). Extensive beef production contributes over $1 billion dollars to the national economy annually and employs over 9000 people, many in rural communities (Gordon 2007). ‘Economic modelling of grazing systems in the Fitzroy and Burdekin catchments’ was a joint project with the Fitzroy Basin Association and the Queensland Department of Employment Economic Development and Innovation. The project was formed under the federally funded Caring For Our Country and the Reef Rescue programs. The project objectives were as follows; * Quantifying the costs of over-utilising available pasture and the resulting sediment leaving a representative farm for four of the major land systems in the Burdekin or Fitzroy catchments and identifying economically optimal pasture utilisation rates * Estimating the cost of reducing pasture utilisation rates below the determined optimal * Using this information, guide the selection of appropriate tools to achieve reduced utilisation rates e.g. extension process versus incentive payments or a combination of both * Model the biophysical and economic impacts of altering grazing systems to restore land condition e.g. from C condition to B condition for four land systems in the Burdekin or Fitzroy catchments.
Resumo:
Certain bacteria present on frog skin can prevent infection by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), conferring disease resistance. Previous studies have used agar-based in vitro challenge assays to screen bacteria for Bd-inhibitory activity and to identify candidates for bacterial supplementation trials. However, agar-based assays can be difficult to set up and to replicate reliably. To overcome these difficulties, we developed a semi-quantitative spectrophotometric challenge assay technique. Cell-free supernatants were prepared from filtered bacterial cultures and added to 96-well plates in replicated wells containing Bd zoospores suspended in tryptone-gelatin hydrolysate-lactose (TGhL) broth medium. Plates were then read daily on a spectrophotometer until positive controls reached maximum growth in order to determine growth curves for Bd. We tested the technique by screening skin bacteria from the Australian green-eyed tree frog Litoria serrata. Of bacteria tested, 31% showed some degree of Bd inhibition, while some may have promoted Bd growth, a previously unknown effect. Our cell-free supernatant challenge assay technique is an effective in vitro method for screening bacterial isolates for strong Bd-inhibitory activity. It contributes to the expanding field of bioaugmentation research, which could play a significant role in mitigating the effects of chytridiomycosis on amphibians around the world.
Resumo:
Statistical studies of rainfed maize yields in the United States(1) and elsewhere(2) have indicated two clear features: a strong negative yield response to accumulation of temperatures above 30 degrees C (or extreme degree days (EDD)), and a relatively weak response to seasonal rainfall. Here we show that the process-based Agricultural Production Systems Simulator (APSIM) is able to reproduce both of these relationships in the Midwestern United States and provide insight into underlying mechanisms. The predominant effects of EDD in APSIM are associated with increased vapour pressure deficit, which contributes to water stress in two ways: by increasing demand for soil water to sustain a given rate of carbon assimilation, and by reducing future supply of soil water by raising transpiration rates. APSIM computes daily water stress as the ratio of water supply to demand, and during the critical month of July this ratio is three times more responsive to 2 degrees C warming than to a 20% precipitation reduction. The results suggest a relatively minor role for direct heat stress on reproductive organs at present temperatures in this region. Effects of elevated CO2 on transpiration efficiency should reduce yield sensitivity to EDD in the coming decades, but at most by 25%.
Resumo:
Wood is an important biological resource which contributes to nutrient and hydrology cycles through ecosystems, and provides structural support at the plant level. Thousands of genes are involved in wood development, yet their effects on phenotype are not well understood. We have exploited the low genomic linkage disequilibrium (LD) and abundant phenotypic variation of forest trees to explore allelic diversity underlying wood traits in an association study. Candidate gene allelic diversity was modelled against quantitative variation to identify SNPs influencing wood properties, growth and disease resistance across three populations of Corymbia citriodora subsp. variegata, a forest tree of eastern Australia. Nine single nucleotide polymorphism (SNP) associations from six genes were identified in a discovery population (833 individuals). Associations were subsequently tested in two smaller populations (130160 individuals), validating our findings in three cases for actin 7 (ACT7) and COP1 interacting protein 7 (CIP7). The results imply a functional role for these genes in mediating wood chemical composition and growth, respectively. A flip in the effect of ACT7 on pulp yield between populations suggests gene by environment interactions are at play. Existing evidence of gene function lends strength to the observed associations, and in the case of CIP7 supports a role in cortical photosynthesis.
Resumo:
The lesser grain borer Rhyzopertha dominica (F.) is one of the most destructive insect pests of stored grain. This pest has been controlled successfully by fumigation with phosphine for the last several decades, though strong resistance to phosphine in many countries has raised concern about the long term usefulness of this control method. Previous genetic analysis of strongly resistant (SR) R. dominica from three widely geographically dispersed regions of Australia, Queensland (SRQLD), New South Wales (SRNSW) and South Australia (SRSA), revealed a resistance allele in the rph1 gene in all three strains. The present study confirms that the rph1 gene contributes to resistance in a fourth strongly resistant strain, SR2(QLD), also from Queensland. The previously described rph2 gene, which interacts synergistically with rph1 gene, confers strong resistance on SRQLD and SRNSW. We now provide strong circumstantial evidence that weak alleles of rph2, together with rph1, contribute to the strong resistance phenotypes of SRSA and SR2(QLD). To test the notion that rph1 and rph2 are solely responsible for the strong resistance phenotype of all resistant R. dominica, we created a strain derived by hybridising the four strongly resistant lines. Following repeated selection for survival at extreme rates of phosphine exposure, we found only slightly enhanced resistance. This suggests that a single sequence of genetic changes was responsible for the development of resistance in these insects.
Resumo:
Species delineation in the spotted gum complex was revisited focusing on Corymbia maculata. This study expands the range of C. maculata analysed with microsatellite markers to include populations from the north of the species range. It supported earlier findings that it is a cohesive genetic entity, well resolved from northern spotted gum taxa, Corymbia citriodora and Corymbia henryi; and inferences that its insularity is due to early lineage divergence and historical isolation. The northern extent of C. maculata sampled, as defined by chloroplast and nuclear genomes predominantly of C. maculata character, was the location of Kiwarrak, south of the Manning River near Taree in New South Wales. Trees from a recognised intergrade zone at the Yarratt locality, around 26 km north of Kiwarrak, also possessed a uniquely C. maculata chloroplast haplotype, but their nuclear genomes were predominantly of northern taxa ancestry. Range expansion of northern taxa leading to southerly gene movement into populations formerly C. maculata, would account for this apparent instance of chloroplast capture. Two subpopulations were identified in C. maculata, a northern population of which the Ourimbah locality was the most southerly studied, and a southern population of which Wingello was the most northerly locality studied. Diminished levels of northern taxa ancestry, i.e. C. citriodora or C. henryi, in individuals from the southern, relative to the northern subpopulation of C. maculata, suggested that secondary contact with northern taxa contributes to its substructure.
Resumo:
While plums are traditionally bred for fresh fruit traits such as size, sweetness, yield and disease resistance the Queensland Government breeding program for Japanese plum ( Prunus salicina Lindl.) also selected for anthocyanin content to develop a new plum selection named 'Queen Garnet'. When ripe or overripe, it has a near black skin and deep red flesh colour, which when combined, result in exceptionally high anthocyanin content, reaching up to 277 mg/100 g fruit. The skin fraction contributes 36-66% of the total anthocyanin content of fruit. The plum is now being commercially grown to be processed into a range of functional products from food colourants to premium health products. These are sold on the basis of anthocyanin and antioxidant content. Protocols for increasing anthocyanin content have therefore been researched to maximise the total anthocyanin yield rather than fresh fruit weight and taste. The principal approach is through selective harvest of overripe plums high in colour, although post-harvest storage at 21°C results in further anthocyanin synthesis. Modified processing is also required to ensure recovery of anthocyanins from the skin fraction. The plum products have entered testing for assessing health properties beginning with an initial proof of in vivo bioavailability of the anthocyanins.
Resumo:
The primary purpose of spermatozoa is to deliver the paternal DNA to the oocyte at fertilization. During the complex events of fertilization, if the spermatozoon penetrating the oocyte contains compromised or damaged sperm chromatin, the subsequent progression of embryogenesis and foetal development may be affected. Variation in sperm DNA damage and protamine content in ejaculated spermatozoa was reported in the cattle, with potential consequences to bull fertility. Protamines are sperm-specific nuclear proteins that are essential to packaging of the condensed paternal genome in spermatozoa. Sperm DNA damage is thought to be repaired during the process of protamination. This study investigates the potential correlation between sperm protamine content, sperm DNA damage and the subsequent relationships between sperm chromatin and commonly measured reproductive phenotypes. Bos indicus sperm samples (n = 133) were assessed by two flow cytometric methods: the sperm chromatin structure assay (SCSA) and an optimized sperm protamine deficiency assay (SPDA). To verify the SPDA assay for bovine sperm protamine content, samples collected from testis, caput and cauda epididymidis were analyzed. As expected, mature spermatozoa in the cauda epididymidis had higher protamine content when compared with sperm samples from testis and caput epididymidis (p < 0.01). The DNA fragmentation index (DFI), determined by SCSA, was positively correlated (r = 0.33 ± 0.08, p < 0.05) with the percentage of spermatozoa that showed low protamine content using SPDA. Also, DFI was negatively correlated (r = -0.21 ± 0.09, p < 0.05) with the percentage of spermatozoa with high protamine content. Larger scrotal circumference contributes to higher sperm protamine content and lower content of sperm DNA damage (p < 0.05). In conclusion, sperm protamine content and sperm DNA damage are closely associated. Protamine deficiency is likely to be one of the contributing factors to DNA instability and damage, which can affect bull fertility. © 2014 American Society of Andrology and European Academy of Andrology.
Resumo:
To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.
Resumo:
As the importance of plant-based antioxidants to human health becomes clearer there is a rapidly expanding search for rich sources of these compounds. Much attention is currently focussed on the antioxidant potential of ellagic acid (EA). Making assessment difficult is that EA occurs in different forms: free EA, EA glycosides and polymeric ellagitannins. The overall structure of these forms has a pronounced effect on their antioxidant efficiency and is responsible for widely differing reactivity, solubility and hence bioavailability properties. Often associated with EA is vitamin C which also contributes to the plant foods total antioxidant activity. Previous studies have suggested that ascorbic acid may have protective effects on the polyphenol content of plants. With a view to gaining evidence that the bioactive forms of vitamin C influence EA content, several fruits with a range of EA and vitamin C contents were examined. To facilitate a more detailed assessment of the selected fruits antioxidant potential the relative proportions of EA forms were also determined. In strawberries and boysenberries EA content was predominantly in the polymeric form (21% and 12% free EA plus EA glycoside vs total EA levels for strawberry and boysenberry respectively), while in Kakadu plum it was mainly in the free form (70% of total EA). An increasing percentage of dehydroascorbic acid (9 to 14% of total vitamin C) indicating enhanced transformation of ascorbic acid to its oxidative degradation product together with stable free EA levels (≈ 950 mg/100 g DW) over the 4 month frozen storage period for the Kakadu plum samples are consistent with a possible protective effect of EA by ascorbic acid.
Resumo:
Methane is a potent greenhouse gas with a global warming potential ∼28 times that of carbon dioxide. Consequently, sources and sinks that influence the concentration of methane in the atmosphere are of great interest. In Australia, agriculture is the primary source of anthropogenic methane emissions (60.4% of national emissions, or 3260kt-1methaneyear-1, between 1990 and 2011), and cropping and grazing soils represent Australia's largest potential terrestrial methane sink. As of 2011, the expansion of agricultural soils, which are ∼70% less efficient at consuming methane than undisturbed soils, to 59% of Australia's land mass (456Mha) and increasing livestock densities in northern Australia suggest negative implications for national methane flux. Plant biomass burning does not appear to have long-term negative effects on methane flux unless soils are converted for agricultural purposes. Rice cultivation contributes marginally to national methane emissions and this fluctuates depending on water availability. Significant available research into biological, geochemical and agronomic factors has been pertinent for developing effective methane mitigation strategies. We discuss methane-flux feedback mechanisms in relation to climate change drivers such as temperature, atmospheric carbon dioxide and methane concentrations, precipitation and extreme weather events. Future research should focus on quantifying the role of Australian cropping and grazing soils as methane sinks in the national methane budget, linking biodiversity and activity of methane-cycling microbes to environmental factors, and quantifying how a combination of climate change drivers will affect total methane flux in these systems.