5 resultados para CN : Cetane number
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
The Queensland Great Barrier Reef line fishery in Australia is regulated via a range of input and output controls including minimum size limits, daily catch limits and commercial catch quotas. As a result of these measures a substantial proportion of the catch is released or discarded. The fate of these released fish is uncertain, but hook-related mortality can potentially be decreased by using hooks that reduce the rates of injury, bleeding and deep hooking. There is also the potential to reduce the capture of non-target species though gear selectivity. A total of 1053 individual fish representing five target species and three non-target species were caught using six hook types including three hook patterns (non-offset circle, J and offset circle), each in two sizes (small 4/0 or 5/0 and large 8/0). Catch rates for each of the hook patterns and sizes varied between species with no consistent results for target or non-target species. When data for all of the fish species were aggregated there was a trend for larger hooks, J hooks and offset circle hooks to cause a greater number of injuries. Using larger hooks was more likely to result in bleeding, although this trend was not statistically significant. Larger hooks were also more likely to foul-hook fish or hook fish in the eye. There was a reduction in the rates of injuries and bleeding for both target and non-target species when using the smaller hook sizes. For a number of species included in our study the incidence of deep hooking decreased when using non-offset circle hooks, however, these results were not consistent for all species. Our results highlight the variability in hook performance across a range of tropical demersal finfish species. The most obvious conservation benefits for both target and non-target species arise from using smaller sized hooks and non-offset circle hooks. Fishers should be encouraged to use these hook configurations to reduce the potential for post-release mortality of released fish.
Resumo:
Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Zebu (Bos indicus) crossbred beef cows (Droughtmaster) were maintained long-term (16 months) on standard nutrition (SN) or improved nutrition (IN). Cows on IN had better body condition and greater (P<0.05) circulating concentrations of leptin than cows on SN (0.7±0.1n/ml and 1.7±0.1n/ml, respectively). There were no outstanding differences between SN and IN cows in basal number of ovarian follicles (≤4mm, 5-8mm, and≥9mm) and there were also no differences in number of oocytes recovered by oocyte pick-up. Cows on IN had a greater (P<0.05) number of total follicles after stimulation with FSH than cows on SN. Oocytes from cows on IN had greater (P<0.05) lipid content than cows on SN (-0.23±0.16 and 0.20±0.18 arbitrary units, respectively) and oocytes of the former cows also tended to have more active mitochondria, although this was not significant. Cows on IN showed a positive relationship (R2=0.31, P<0.05) between plasma leptin and oocyte lipid content. Lipids are utilized by oocytes during high energy consumptive processes including fertilization and early cleavage. The greater lipid content of oocytes from IN cows could therefore confer a reproductive advantage. The present study has shown relationships between nutrition, body condition, circulating leptin, and oocyte lipid content, but a clear cause-and-effect requires further investigation in the cow. © 2013 Elsevier B.V.
Resumo:
The application of variable-number tandem repeats (VNTR) genotyping of Mycobacterium avium subsp. paratuberculosis isolates to assist in investigating incidents of bovine Johne’s disease in a low-prevalence region of Australia is described in the current study. Isolates from a response to detection of bovine Johne’s disease in Queensland were compared with strains from national and international sources. The tandem application of mycobacterial interspersed repetitive unit (MIRU) and multilocus short sequence repeats (MLSSR) genotyping identified 2 strains, 1 that infected cattle on multiple properties with trace-forward histories from a common infected property, and 1 genotypically different strain recovered from a single property. The former strain showed an identical genotype to an isolate from India. Neither strain showed a genotypic link to regions of Australia with a higher prevalence of the disease. Genotyping has indicated incursions from 2 independent sources. This intelligence has informed investigations into potential routes of entry and the soundness of ongoing control measures, and supported strategy and policy decisions regarding management of Mycobacterium avium subsp. paratuberculosis incursions for Queensland.