5 resultados para CHRONOPOTENTIOMETRY WITH LINEAR CURRENT SCANNING
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Proteases can catalyze both peptide bond cleavage and formation, yet the hydrolysis reaction dominates in nature. This presents an interesting challenge for the biosynthesis of backbone cyclized (circular) proteins, which are encoded as part of precursor proteins and require post-translational peptide bond formation to reach their mature form. The largest family of circular proteins are the plant-produced cyclotides; extremely stable proteins with applications as bioengineering scaffolds. Little is known about the mechanism by which they are cyclized in vivo but a highly conserved Asn (occasionally Asp) residue at the C terminus of the cyclotide domain suggests that an enzyme with specificity for Asn (asparaginyl endopeptidase; AEP) is involved in the process. Nicotiana benthamiana does not endogenously produce circular proteins but when cDNA encoding the precursor of the cyclotide kalata B1 was transiently expressed in the plants they produced the cyclotide, together with linear forms not commonly observed in cyclotide-containing plants. Observation of these species over time showed that in vivo asparaginyl bond hydrolysis is necessary for cyclization. When AEP activity was suppressed, either by decreasing AEP gene expression or using a specific inhibitor, the amount of cyclic cyclotide in the plants was reduced compared with controls and was accompanied by the accumulation of extended linear species. These results suggest that an AEP is responsible for catalyzing both peptide bond cleavage and ligation of cyclotides in a single processing event.
Resumo:
The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis, is enigmatic because it occurs globally in both declining and apparently healthy (non-declining) amphibian populations. This distribution has fueled debate concerning whether, in sites where it has recently been found, the pathogen was introduced or is endemic. In this study, we addressed the molecular population genetics of a global collection of fungal strains from both declining and healthy amphibian populations using DNA sequence variation from 17 nuclear loci and a large fragment from the mitochondrial genome. We found a low rate of DNA polymorphism, with only two sequence alleles detected at each locus, but a high diversity of diploid genotypes. Half of the loci displayed an excess of heterozygous genotypes, consistent with a primarily clonal mode of reproduction. Despite the absence of obvious sex, genotypic diversity was high (44 unique genotypes out of 59 strains). We provide evidence that the observed genotypic variation can be generated by loss of heterozygosity through mitotic recombination. One strain isolated from a bullfrog possessed as much allelic diversity as the entire global sample, suggesting the current epidemic can be traced back to the outbreak of a single clonal lineage. These data are consistent with the current chytridiomycosis epidemic resulting from a novel pathogen undergoing a rapid and recent range expansion. The widespread occurrence of the same lineage in both healthy and declining populations suggests that the outcome of the disease is contingent on environmental factors and host resistance.
Resumo:
Thaumastocoris peregrinus is a recently introduced invertebrate pest of non-native Eucalyptus plantations in the Southern Hemisphere. It was first reported from South Africa in 2003 and in Argentina in 2005. Since then, populations have grown explosively and it has attained an almost ubiquitous distribution over several regions in South Africa on 26 Eucalyptus species. Here we address three key questions regarding this invasion, namely whether only one species has been introduced, whether there were single or multiple introductions into South Africa and South America and what the source of the introduction might have been. To answer these questions, bar-coding using mitochondrial DNA (COI) sequence diversity was used to characterise the populations of this insect from Australia, Argentina, Brazil, South Africa and Uruguay. Analyses revealed three cryptic species in Australia, of which only T. peregrinus is represented in South Africa and South America. Thaumastocoris peregrinus populations contained eight haplotypes, with a pairwise nucleotide distance of 0.2-0.9% from seventeen locations in Australia. Three of these haplotypes are shared with populations in South America and South Africa, but the latter regions do not share haplotypes. These data, together with the current distribution of the haplotypes and the known direction of original spread in these regions, suggest that at least three distinct introductions of the insect occurred in South Africa and South America before 2005. The two most common haplotypes in Sydney, one of which was also found in Brisbane, are shared with the non-native regions. Sydney populations of T. peregrinus, which have regularly reached outbreak levels in recent years, might thus have served as source of these three distinct introductions into other regions of the Southern Hemisphere.
Resumo:
The exotic rust pathogen Puccinia psidii is now widespread along the east coast of Australia from temperate Victoria to tropical far north Queensland, with a current host range exceeding 200 species from 37 myrtaceous genera. To determine the threat P. psidii poses to plantation and native eucalypts, artificial inoculation was used to screen germplasm of spotted gum (Corymbia spp.) for resistance to the biotype of P. psidii that has become established in Australia. The objective was to characterize resistance to P. psidii within the Corymbia species complex so that management strategies for the deployment of germplasm from existing breeding programmes of these spotted gum species could be developed. Symptom development initiated 7 days after inoculation, with resistant and susceptible seedlings identified within all species, provenances and families. Inter- and intraspecific variability in rust resistance was observed among spotted gum species. There was no apparent relationship between climatic conditions at the provenance origin and disease resistance. The heritability estimates for all assessments are moderate to high and indicate a significant level of additive genetic variance for rust resistance within the populations. The results of this study clearly identify potential to select for resistance at the family level within the tested populations. While the potential for P. psidii to detrimentally impact upon Corymbia in the nursery and in young plantations was demonstrated, estimations of the heritability of resistance suggest that efforts to enhance this trait through breeding have reasonable prospects for success.
Resumo:
The Australian National Mango Breeding Program has been breeding mangoes since 1994. In recent years, evaluation of the elite selection have identified three high performing hybrids, NMBP1243, NMBP1201 and NMBP4069, which are in the process of commercial release. These hybrids all have 'Kensington Pride' as their paternal parent and are characterised by improved fruit colour and tree productivity over 'Kensington Pride'. NMBP1243 is noted for its early season production, and NMBP1201 and NMBP4046 for their firm fruit. The hybrids were produced using hand pollination breeding and selection techniques. The breeding program is ongoing with the current hybridisation program being supported by a multidiscipline approach, that includes marker assisted screening, disease screening, postharvest evaluation and a genomics gene discovery program.