2 resultados para CANDIDATE GENES

em eResearch Archive - Queensland Department of Agriculture


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rust Puccinia psidii infects many species in the family Myrtaceae. Native to South America, the pathogen has recently entered Australia which has a rich Myrtaceous flora, including trees of the ecologically and economically important genus Eucalyptus. We studied the genetic basis of variation in rust resistance in Eucalyptus globulus, the main plantation eucalypt in Australia. Quantitative trait loci (QTL) analysis was undertaken using 218 genotypes of an outcross F2 mapping family, phenotyped by controlled inoculation of their open pollinated progeny with the strain of P. psidii found in Australia. QTL analyses were conducted using a binary classification of individuals with no symptoms (immune) versus those with disease symptoms, and in a separate analysis dividing plants with disease symptoms into those exhibiting the hypersensitive response versus those with more severe symptoms. Four QTL were identified, two influencing whether a plant exhibited symptoms (Ppr2 and Ppr3), and two influencing the presence or absence of a hypersensitive reaction (Ppr4 and Ppr5). These QTL mapped to four different linkage groups, none of which overlap with Ppr1, the major QTL previously identified for rust resistance in Eucalyptus grandis. Candidate genes within the QTL regions are presented and possible mechanisms discussed. Together with past findings, our results suggest that P. psidii resistance in eucalypts is quantitative in nature and influenced by the complex interaction of multiple loci of variable effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of molecular markers for genomic studies in Mangifera indica (mango) will allow marker-assisted selection and identification of genetically diverse germplasm, greatly aiding mango breeding programs. We report here our identification of thousands of unambiguous molecular markers that can be easily assayed across genotypes of the species. With origin centered in Southeast Asia, mangos are grown throughout the tropics and subtropics as a nutritious fruit that exhibits remarkable intraspecific phenotypic diversity. With the goal of building a high density genetic map, we have undertaken discovery of sequence variation in expressed genes across a broad range of mango cultivars. A transcriptome sequence reference was built de novo from extensive sequencing and assembly of RNA from cultivar 'Tommy Atkins'. Single nucleotide polymorphisms (SNPs) in protein coding transcripts were determined from alignment of RNA reads from 24 mango cultivars of diverse origins: 'Amin Abrahimpur' (India), 'Aroemanis' (Indonesia), 'Burma' (Burma), 'CAC' (Hawaii), 'Duncan' (Florida), 'Edward' (Florida), 'Everbearing' (Florida), 'Gary' (Florida), 'Hodson' (Florida), 'Itamaraca' (Brazil), 'Jakarata' (Florida), 'Long' (Jamaica), 'M. Casturi Purple' (Borneo), 'Malindi' (Kenya), 'Mulgoba' (India), 'Neelum' (India), 'Peach' (unknown), 'Prieto' (Cuba), 'Sandersha' (India), 'Tete Nene' (Puerto Rico), 'Thai Everbearing' (Thailand), 'Toledo' (Cuba), 'Tommy Atkins' (Florida) and 'Turpentine' (West Indies). SNPs in a selected subset of protein coding transcripts are currently being converted into Fluidigm assays for genotyping of mapping populations and germplasm collections. Using an alternate approach, SNPs (144) discovered by sequencing of candidate genes in 'Kensington Pride' have already been converted and used for genotyping.