21 resultados para C-AXIS
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Twelve microsatellite DNA markers were isolated in the spot-tail shark (Carcharhinus sorrah) and nine were isolated in Australian black-tip shark (Carcharhinus tilstoni). These loci plus 18 others developed for sharks from the genera Negaprion, Ginglymostoma, Carcharodon and Isurus were tested for amplification success on four species of Carcharhinus (including C. sorrah and C. tilstoni) and four other species representing three diverse families. Cross-amplification was most common within families. Five loci were subsequently tested for polymorphism on 50 C. sorrah and 60 C. tilstoni. The number of alleles per locus was two to 24 and the average heterozygosity was 0.54 (range 0.16-0.87) for C. sorrah and 0.64 (range 0.44-0.78) for C. tilstoni. These loci may be useful tools for genetic analyses of the Carcharhinidae.
Resumo:
Two geometrid moths Chiasmia inconspicua and Chiasmia assimilis, identified as potential biological control agents for prickly acacia Acacia nilotica subsp. indica, were collected in Kenya and imported into quarantine facilities in Australia where laboratory cultures were established. Aspects of the biologies of both insects were studied and CLIMEX® models indicating the climatically favourable areas of Australia were developed. Host range tests were conducted using an approved test list of 74 plant species and no-choice tests of neonate larvae placed on both cut foliage and potted plants. C. inconspicua developed through to adult on prickly acacia and, in small numbers, Acacia pulchella. C. assimilis developed through to adult on prickly acacia and also in very small numbers on A. pulchella, A. deanei, A. decurrens, and A. mearnsii. In all experiments, the response on prickly acacia could be clearly differentiated from the responses on the non-target species. Both insects were approved for release in Australia. Over a three-year period releases were made at multiple sites in north Queensland, almost all in inland areas. There was no evidence of either insect's establishment and both colonies were terminated. A new colony of C. assimilis was subsequently established from insects collected in South Africa and releases of C. assimilis from this new colony were made into coastal and inland infestations of prickly acacia. Establishment was rapid at one coastal site and the insect quickly spread to other infestations. Establishment at one inland area was also confirmed in early 2006. The establishment in coastal areas supported a CLIMEX model that indicated that the climate of coastal areas was more suitable than inland areas.
Resumo:
Hybrids between Corymbia torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson and C. citriodora subsp. variegata (F.Muell.) A.R.Bean & M.W.McDonald are used extensively to establish forestry plantations in subtropical Australia. Methods were developed for in vitro seed germination, shoot multiplication and plantlet formation that could be used to establish in vitro and ex vitro clone banks of juvenile Corymbia hybrids. Effects of sodium hypochlorite concentration and exposure time on seed contamination and germination, and effects of cytokinin and auxin concentrations on shoot multiplication and subsequent rooting, were assessed. A two-step surface sterilisation procedure, involving 70% ethanol followed by 1% sodium hypochlorite, provided almost no contamination and at least 88% germination. A novel method of cytokinin-free node culture proved most effective for in vitro propagation. Lateral bud break of primary shoots was difficult to induce by using cytokinin, but primary shoots rooted prolifically, elongated rapidly and produced multiple nodes in the absence of exogenous cytokinin. Further multiplication was obtained either by elongating lateral shoots of nodal explants in cytokinin-free medium or by inducing organogenic callus and axillary shoot proliferation with 2.2 µm benzyladenine. Plantlets were produced using an in vitro soil-less method that provided extensive rooting in sterile propagation mixture. These methods provide a means for simultaneous laboratory storage and field-testing of clones before selection and multiplication of desired genotypes.
Resumo:
Background and Aims: Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines. Methods: In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes. Key Results: Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energyuse efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR. Conclusions: These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.
Resumo:
Salinity is an increasingly important issue in both rural and urban areas throughout much of Australia. The use of recycled/reclaimed water and other sources of poorer quality water to irrigate turf is also increasing. Hybrid Bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davey), together with the parent species C. dactylon, are amongst the most widely used warm-season turf grass groups. Twelve hybrid Bermudagrass genotypes and one accession each of Bermudagrass (C. dactylon), African Bermudagrass (C. transvaalensis) and seashore paspalum (Paspalum vaginatum Sw.) were grown in a glasshouse experiment with six different salinity treatments applied hydroponically through the irrigation water (ECW = <0.1, 6, 12, 18, 24 or 30 dSm-1) in a flood-and-drain system. Each pot was clipped progressively at 2-weekly intervals over the 12-week experimental period to determine dry matter production; leaf firing was rated visually on 3 occasions during the last 6 weeks of salinity treatment. At the end of the experiment, dry weights of roots and crowns below clipping height were also determined. Clipping yields declined sharply after about the first 6 weeks of salinity treatment, but then remained stable at substantially lower levels of dry matter production from weeks 8 to 12. Growth data over this final 4-week experimental period is therefore a more accurate guide to the relative salinity tolerance of the 15 entries than data from the preceding 8 weeks. Based on these data, the 12 hybrid Bermudagrass genotypes showed moderate salinity tolerance, with FloraDwarfM, 'Champion Dwarf', NovotekM and 'TifEagle' ranking as the most salt tolerant and 'Patriot', 'Santa Ana', 'Tifgreen' and TifSport M the least tolerant within the hybrid group. Nevertheless, Santa Ana, for example, maintained relatively strong root growth as salinity increased, and so may show better salt tolerance in practice than predicted from the growth data alone. The 12 hybrid Bermudagrasses and the single African Bermudagrass genotype were all ranked above FloraTeXM Bermudagrass in terms of salt tolerance. However, seashore paspalum, which is widely acknowledged as a halophytic species showing high salt tolerance, ranked well above all 14 Cynodon genotypes in terms of salinity tolerance.
Resumo:
Wear resistance and recovery of 8 Bermudagrass (Cynodon dactylon (L.) Pers.) and hybrid Bermudagrass (C. Dactylon x C. transvaalensis Burtt-Davey) cultivars grown on a sandbased soil profile near Brisbane, Australia, were assessed in 4 wear trials conducted over a two year period. Wear was applied on a 7-day or a 14-day schedule by a modified Brinkman Traffic Simulator for 6-14 weeks at a time, either during winter-early spring or during summer-early autumn. The more frequent wear under the 7-day treatment was more damaging to the turf than the 14-day wear treatment, particularly during winter when its capacity for recovery from wear was severely restricted. There were substantial differences in wear tolerance among the 8 cultivars investigated, and the wear tolerance rankings of some cultivars changed between years. Wear tolerance was associated with high shoot density, a dense stolon mat strongly rooted to the ground surface, high cell wall strength as indicated by high total cell wall content, and high levels of lignin and neutral detergent fiber. Wear tolerance was also affected by turf age, planting sod quality, and wet weather. Resistance to wear and recovery from wear are both important components of wear tolerance, but the relative importance of their contributions to overall wear tolerance varies seasonally with turf growth rate.
Resumo:
Fine-textured hybrid bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] cultivars have been widely used for golf putting greens and lawn bowls greens in warm-climate areas for more than 40 years. During the past decade, the choice of cultivar for professional turfgrass managers has been expanded by a range of secondgeneration hybrid bermudagrasses, which differ from the first-generation cultivars ‘Tifgreen’ and ‘Tifdwarf ’ in their management requirements. In this paper, we present comparative morphological and developmental data for seven cultivars (Champion Dwarf, FloraDwarf, MS-Supreme, Novotek, Tifdwarf, TifEagle, Tifgreen) grown in spaced plant and sward experiments at Cleveland, Australia (27º32’S lat, 153º15’E long, 25 masl). The four ‘ultradwarf ’ cultivars (Champion Dwarf, MS-Supreme, FloraDwarf, TifEagle) showed slower vertical extension and produced fewer inflorescences than Tifdwarf, Tifgreen, and Novotek. However, in terms of the length of stolon internodes and their overall rate of lateral spread, Champion Dwarf, FloraDwarf, and TifEagle were comparable to Tifdwarf; MS-Supreme (with longer internodes) spread faster laterally, though slower than Tifgreen (which had the longest stolon internodes). In unmown swards, the four ultradwarfs produced shorter leaves than Tifgreen, Tifdwarf, and Novotek, but only Champion Dwarf produced significantly narrower leaves than Tifgreen, Tifdwarf, and Novotek, with TifEagle leaves also significantly narrower than those of Tifgreen and Novotek. Minimum threshold temperatures for growth were approximately 9° to 10°C (air temperature) and 15° to 16°C at 10 cm soil depth.
Resumo:
Rooted cutting propagation is widely used for maximising tree yield, quality and uniformity in conjunction with clonal selection. Some eucalypt species are deployed as rooted cuttings but many are considered to difficult to root. This study examined IBA effects on photoinhibition, root formation, mortality and root and shoot development in cuttings of Corymbia torelliana, C. citriodora and their hybrids. IBA had little or no effect on photoinhibition but it had strong, dose-dependent effects on root formation and mortality. IBA frequently increases primary root number of rooted cutting but it did not increase total root weight, length, surface area or volume, possibly because the highest doe (8g IBA/kg IBA/kg powder) caused leaf abscission and sometimes reduced leaf area (by 55-79%)or shoot dry weight (by 40-58%). An intermediate dose (3g IBA/kg powder) most consistnely improved root formation with little or no effect on mortality or shoot development. Across the F1 hybrid families this treatment increased the number of rooted cuttings by 72-121% and more than ddoubled the number of primary roots per rooted cutting (from 1.1-1.7 roots to 3.5-4.1 roots). This simple treatment will facilitate commercial multiplication of superior individuals or selected families of C. torelliana x C. citriodora through a vegetative propagation system.
Resumo:
The common blacktip shark (Carcharhinus limbatus) and the Australian blacktip shark (C. tilstoni) are morphologically similar species that co-occur in subtropical and tropical Australia. In striking contrast to what has been previously reported, we demonstrate that the common blacktip shark is not rare in northern Australia but occurs in approximately equal frequencies with the Australian blacktip shark. Management of shark resources in northern Australia needs to take account of this new information. Species identification was performed using nucleotide sequences of the control, NADH dehydrogenase subunit 4 (ND4) and cytochrome oxidase I (COI) regions in the mitochondrial genome. The proportion of overall genetic variation (FST) between the two species was small (0.042, P < 0.01) based on allele frequencies at five microsatellite loci. We confirm that a third blacktip species (C. amblyrhynchoides, graceful shark) is closely related to C. tilstoni and C. limbatus and can be distinguished from them on the basis of mtDNA sequences from two gene regions. The Australian blacktip shark (C. tilstoni) was not encountered among 20 samples from central Indonesia that were later confirmed to be common blacktip and graceful sharks. Fisheries regulators urgently need new information on life history, population structure and morphological characters for species identification of blacktip shark species in Australia.
Resumo:
Quantify soil C stocks in grains and sugarcane cropping systems of Queensland, including impacts of management practices.
Resumo:
This study provides information about wood quality, structural properties, processing characterists and product suitability of wood harvested from fast-grown hardwood plantations. Wood quality attributes tested included density, extractive content, unit shrinkage, heartwood proportion and sapwood width. Structural properties tested included small clear and full section strength and stiffness, hardness, joint group, visual grade assessment and natural vibration-based grade assessment. The variation between the inner, intermediate and outer heartwood zones and the variation between provenances was also tested. Overall, the wood qualtiy attributes measured for 19 year-old E. cloeziana and 15 year-old E. pellita plantation material fall between those expected from the wood of mature, native forest trees and those found in younger plantation material of the same species.
Resumo:
This report evaluates the wood and veneer properties of plantation-grown spotted gum (Corymbia citriodora subsp. variegata, or CCV) and Dunn's white gum (Eucalyptus dunnii), grown at different stockings, in thinning trials near Ellangowan in north-east New South Wales (mean annual rainfall 1050 mm) and Kingaroy in south-east Queensland (mean annual rainfall 873 mm). Thinning trials were established at age seven years. Both species showed a significant increase in stem diameter growth of the dominant trees in response to thinning. At age 10 years, trees from the unthinned (950–1270 stems ha-1) and 300 stems ha-1 treatments were selected for veneering. Five dominant trees were felled from each combination of species x sites x thinning treatment. Diameter at breast height over bark of the selected trees ranged from 20 cm to 27 cm at Ellangowan, and 19 cm to 26 cm at Kingaroy. From each tree, 1.5 m long billets were removed at two positions: a butt billet from 0.3–1.8 m above ground and a top billet from approximately 5.5–7.0 m. Log end splitting was assessed 24 hours after harvesting and again after steaming, approximately four days after harvesting. Disks from just above both billets were collected for assessment of wood properties. Billets were peeled on a spindleless veneer lathe to produce a full veneer ribbon with a target green thickness of 2.8 to 3.0 mm. The 1.55 m wide (tangential dimension) veneer sheets were dried and graded according to AS/NZ Standard 2269:2008, which describes four veneer grades. Veneer samples taken along the length of the veneer ribbon, at regular intervals of 1.55 m, were tested for stiffness, shrinkage and density. Veneer length measurements were used to calculate the radial distance of each sample from the central axis of the billet. Overall veneer gross recoveries ranged from 50% to 70%. They were significantly lower at the Kingaroy site, for both species. The veneer recoveries achieved were 2–3 times higher than typical green off saw recoveries from small plantation hardwood logs of similar diameter. Most of the veneer recovered was classified as D-grade. CCV trees from the Ellangowan site yielded up to 38% of the better C-grade and higher grade veneers. The main limiting factors that prevented veneer from meeting higher grades were the presence of kino defects and encased knots. Splits in E. dunnii veneer also contributed to reduced grade quality. Log end splits were higher for E. dunnii than for CCV, and logs from Ellangowan exhibited more severe splitting. Split index was generally higher for top than for butt billets. Split index was strongly correlated with the average veneer grade from corresponding billets. The Ellangowan site, where rainfall was higher and trees grew faster, yielded significantly denser and stiffer veneers than did the drier sites near Kingaroy, where tree growth was slower. The difference was more pronounced for E. dunnii than for CCV. Differences in measured wood properties between thinned and unthinned treatments were generally small and not significant. On average, 10% of billet volume was lost during the peeling rounding-up process. Much of the wood laid down following thinning was removed during rounding-up, meaning the effect of thinning on veneer properties could not be effectively assessed. CCV was confirmed as having high veneer density and very good veneer stiffness, exceeding 15 GPa, making it very suitable for structural products. E. dunnii also demonstrated good potential as a useful structural plywood resource, achieving stiffness above 10 GPa. Veneer stiffness and density in CCV increased from pith to bark at both sites, while for E. dunnii there was a radial increase in these properties at the Ellangowan site only. At the drier Kingaroy site, veneer stiffness and density declined from mid-radius to the log periphery. This may be associated with prolonged drought from 2005 to 2009, corresponding to the later years of tree growth at the Kingaroy site. CCV appeared to be less sensitive to drought conditions. Standing tree acoustic velocity, determined by the Fakopp time-of-flight method, provided a reliable prediction of average veneer stiffness for both species (R2=0.78 for CCV and R2=0.90 for E. dunnii) suggesting that the Fakopp method may be a useful indicator of tree and stand quality, in terms of veneer stiffness in standing trees.
Resumo:
Corymbia F1 hybrids have high potential for plantation forestry; however, little is known of their reproductive biology and potential for genetic pollution of native Corymbia populations. This study aims to quantify the influence of reproductive isolating barriers on the success of novel reciprocal and advanced generation Corymbia hybrids. Two maternal taxa, Corymbia citriodora subsp. citriodora and Corymbia torelliana, were pollinated using five paternal taxa, C. citriodora subsp. citriodora, C. torelliana, one C. torelliana x C. citriodora subsp. citriodora hybrid and two C. torelliana x C. citriodora subsp. variegata hybrids. Pollen tube, embryo and seed development were assessed. Reciprocal hybridisation between C. citriodora subsp. citriodora and C. torelliana was successful. Advanced generation hybrids were also created when C. citriodora subsp. citriodora or C. torelliana females were backcrossed with F1 hybrid taxa. Prezygotic reproductive isolation was identified via reduced pollen tube numbers in the style and reduced numbers of ovules penetrated by pollen tubes. Reproductive isolation was weakest within the C. citriodora subsp. citriodora maternal taxon, with two hybrid backcrosses producing equivalent capsule and seed yields to the intraspecific cross. High hybridising potential was identified between all Corymbia species and F1 taxa studied. This provides opportunities for advanced generation hybrid breeding, allowing desirable traits to be amplified. It also indicates risks of gene flow between plantation and native Corymbia populations.
Resumo:
A protocol was developed for short-term preservation and distribution of the plantation eucalypt, Corymbia torelliana × C. citriodora, using alginate-encapsulated shoot tips and nodes as synthetic seeds. Effects of sowing medium, auxin concentration, storage temperature and planting substrate on shoot regrowth or conversion into plantlets were assessed for four different clones. High frequencies of shoot regrowth (76–100%) from encapsulated explants were consistently obtained in hormone-free half- and full-strength Murashige and Skoog (MS) sowing media. Conversion into plantlets from synthetic seeds was achieved on half-strength MS medium by treating shoot tips or nodes with 4.9–78.4 μM IBA prior to encapsulation. Pre-treatment with 19.6 μM IBA provided 62–100% conversion, and 95–100% of plantlets survived after acclimatisation under nursery conditions. Synthetic seeds containing explants pre-treated with IBA were stored for 8 weeks much more effectively at 25°C than at 4°C, with regrowth frequencies of 50–84% at 25°C compared with 0–4% at 4°C. To eliminate the in vitro culture step after encapsulation, synthetic seeds were allowed to pre-convert before sowing directly onto a range of ex vitro non-sterile planting substrates. Highest frequencies (46–90%) of plantlet formation from pre-converted synthetic seeds were obtained by transferring shoot tip-derived synthetic seeds onto an organic compost substrate. These plantlets exhibited almost 100% survival in the nursery without mist irrigation. Pre-conversion of non-embryonic synthetic seeds is a novel technique that provides a convenient alternative to somatic embryo-derived artificial seeds.
Resumo:
Alginate encapsulation is a simple and cost-effective technique to preserve plant germplasm but there are only a few reports available on preservation of encapsulated explants of two highly valuable groups of tropical trees, the eucalypts (Myrtaceae) and mahoganies (Meliaceae). This study investigated alginate encapsulation for preservation of the eucalypt hybrid, Corymbia torelliana × C. citriodora, and the African mahogany, Khaya senegalensis. We assessed shoot regrowth of encapsulated shoot tips and nodes after storage for 0, 3, 6 and 12 months on media varying in sucrose and nutrient content, under storage conditions of 14°C and zero-irradiance. Encapsulated explants of both trees were preserved most effectively on high-nutrient (half-strength Murashige and Skoog) medium containing 1% sucrose, which provided very high frequencies of shoot regrowth (92–100% for Corymbia and 71–98% for Khaya) and excellent shoot development after 12 months’ storage. This technique provides an extremely efficient means for storage and exchange of eucalypts and mahoganies, ideally suited for incorporation into plant breeding and germplasm conservation programs.