51 resultados para C-70
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The white-spotted eagle ray Aetobatus narinari is a species complex that occurs circumglobally throughout warm-temperate waters. Aetobatus narinari is semi-pelagic and large (up to 300 cm disc width), suggesting high dispersal capabilities and gene flow on a wide spatial scale. Sequence data from two mitochondrial genes, cytochrome b (cytb) and NADH dehydrogenase subunit 4 (ND4), were used to determine the genetic variability within and among 18 sampling locations in the central Indo-Pacific biogeographical region. Populations in the Indo-Pacific were highly genetically structured with c. 70% of the total genetic variation found among three geographical regions (East China Sea, Southeast Asia and Australia). FST was 0.64 for cytb and 0.53 for ND4, with φST values being even larger, that is, 0.78 for cytb and 0.65 for ND4. This high-level genetic partitioning provides strong evidence against extensive gene flow in A. narinari. The degree of genetic population structuring in the Indo-Pacific was similar to that found on a global scale. Global FST was 0.63 for cytb and 0.57 for ND4, and global φST values were 0.94 for cytb and 0.82 for ND4. This suggests that the A. narinari complex may be more speciose than the two or three species proposed to date. Further sampling and genetic analyses are likely to uncover the ‘evolutionarily significant’ and ‘management’ units that are critical to determine the susceptibilities of individual populations to regional fishing pressures and to provide advice on management options. Network analyses showed a close genetic relationship between haplotypes from the central Indo-Pacific and South Africa, providing support for a proposed dispersal pathway from the possible centre of origin of the A. narinari species complex in the Indo-Pacific into the Atlantic Ocean.
Resumo:
Hybrids between Corymbia torelliana (F.Muell.) K.D.Hill & L.A.S.Johnson and C. citriodora subsp. variegata (F.Muell.) A.R.Bean & M.W.McDonald are used extensively to establish forestry plantations in subtropical Australia. Methods were developed for in vitro seed germination, shoot multiplication and plantlet formation that could be used to establish in vitro and ex vitro clone banks of juvenile Corymbia hybrids. Effects of sodium hypochlorite concentration and exposure time on seed contamination and germination, and effects of cytokinin and auxin concentrations on shoot multiplication and subsequent rooting, were assessed. A two-step surface sterilisation procedure, involving 70% ethanol followed by 1% sodium hypochlorite, provided almost no contamination and at least 88% germination. A novel method of cytokinin-free node culture proved most effective for in vitro propagation. Lateral bud break of primary shoots was difficult to induce by using cytokinin, but primary shoots rooted prolifically, elongated rapidly and produced multiple nodes in the absence of exogenous cytokinin. Further multiplication was obtained either by elongating lateral shoots of nodal explants in cytokinin-free medium or by inducing organogenic callus and axillary shoot proliferation with 2.2 µm benzyladenine. Plantlets were produced using an in vitro soil-less method that provided extensive rooting in sterile propagation mixture. These methods provide a means for simultaneous laboratory storage and field-testing of clones before selection and multiplication of desired genotypes.
Resumo:
Corymbia F1 hybrids have high potential for plantation forestry; however, little is known of their reproductive biology and potential for genetic pollution of native Corymbia populations. This study aims to quantify the influence of reproductive isolating barriers on the success of novel reciprocal and advanced generation Corymbia hybrids. Two maternal taxa, Corymbia citriodora subsp. citriodora and Corymbia torelliana, were pollinated using five paternal taxa, C. citriodora subsp. citriodora, C. torelliana, one C. torelliana x C. citriodora subsp. citriodora hybrid and two C. torelliana x C. citriodora subsp. variegata hybrids. Pollen tube, embryo and seed development were assessed. Reciprocal hybridisation between C. citriodora subsp. citriodora and C. torelliana was successful. Advanced generation hybrids were also created when C. citriodora subsp. citriodora or C. torelliana females were backcrossed with F1 hybrid taxa. Prezygotic reproductive isolation was identified via reduced pollen tube numbers in the style and reduced numbers of ovules penetrated by pollen tubes. Reproductive isolation was weakest within the C. citriodora subsp. citriodora maternal taxon, with two hybrid backcrosses producing equivalent capsule and seed yields to the intraspecific cross. High hybridising potential was identified between all Corymbia species and F1 taxa studied. This provides opportunities for advanced generation hybrid breeding, allowing desirable traits to be amplified. It also indicates risks of gene flow between plantation and native Corymbia populations.
Resumo:
Near-ripe ‘Kensington Pride’ mango (Mangifera indica L.) fruit with green skin colour generally return lower wholesale and retail prices. Pre-harvest management, especially nitrogen (N) nutrition, appears to be a major causal factor. To obtain an understanding of the extent of the problem in the Burdekin district (dry tropics; the major production area in Australia), green mature ‘Kensington Pride’ mango fruit were harvested from ten orchards and ripened at 20 ± 0.5 O C. Of these orchards, 70% produced fruit with more than 25% of the skin surface area green when ripe. The following year, the effect of N application on skin colour and other quality attributes was investigated on three orchards, one with a high green (HG) skin problem and two with a low green (LG) skin problem. N was applied at pre-flowering and at panicle emergence at the rate of 0,75,150,300 g per tree (soil applied) or 50 g per tree as foliar N for the HG orchard, and 0,150,300,450 g per tree (soil applied) or 50 g per tree (foliar) for the LG orchards. In all orchards the proportion of green colour on the ripe fruit was significantly (P<0.05) higher with soil applications of 150 g N or more per tree. Foliar sprays resulted in a higher proportion of green colour than the highest soil treatment in the HG orchard, but not in the LG orchards. Anthracnose disease severity was significantly (P<0.05) higher with 300 g of N per tree or foliar treatment in the HG orchard, compared with no additional N. Thus, N can reduce mango fruit quality by increasing green colour and anthracnose disease in ripe fruit.
Resumo:
A total of 27 isolates of Histophilus somni from Australian cattle were tested for in vitro sensitivity to tilmicosin by an agar dilution methodology. All 27 isolates were found to be sensitive.
Resumo:
The current study was undertaken to enumerate Gram-positive bacteria in fresh sub-tropical marine fish and determine the effect of ambient storage (25°C) on the Gram-positive bacterial count. Total and Gram-positive bacteria were enumerated in the muscles, gills and gut of fresh and stored Pseudocaranx dentex, Pagrus auratus and Mugil cephalus on tryptone soya agar (TSA) and TSA with 0.25% phenylethyl alcohol (PEA), respectively. Initial studies indicated that PEA significantly reduced total aerobic bacterial count (TABC) whereas control Gram-positive bacteria were not affected by 0.25% PEA. TABC significantly increased in all fish body parts, whereas Gram-positive aerobic bacterial count (GABC) significantly increased only in the muscles and gills during ambient storage for 15 h. The TABC of the fish species increased from 4.00, 6.13 and 4.58 log cfu g-1, respectively in the muscles, gills, and gut to 6.31, 7.31 and 7.23 log cfu g-1 by the end of storage. GABC increased from 2.00, 3.52 and 2.20 log cfu g-1 to 4.70, 5.85 and 3.36 log cfu g-1. Within each species, TABC were significantly higher in the gills compared to that of muscles and gut; however, no significant differences were found in GABC between muscles and gills. This study demonstrated the potential importance of Gram-positive bacteria in sub-tropical marine fish and their spoilage.
Resumo:
Twelve microsatellite DNA markers were isolated in the spot-tail shark (Carcharhinus sorrah) and nine were isolated in Australian black-tip shark (Carcharhinus tilstoni). These loci plus 18 others developed for sharks from the genera Negaprion, Ginglymostoma, Carcharodon and Isurus were tested for amplification success on four species of Carcharhinus (including C. sorrah and C. tilstoni) and four other species representing three diverse families. Cross-amplification was most common within families. Five loci were subsequently tested for polymorphism on 50 C. sorrah and 60 C. tilstoni. The number of alleles per locus was two to 24 and the average heterozygosity was 0.54 (range 0.16-0.87) for C. sorrah and 0.64 (range 0.44-0.78) for C. tilstoni. These loci may be useful tools for genetic analyses of the Carcharhinidae.
Resumo:
A laboratory study was undertaken to determine the persistence and efficacy of spinosad against Rhyzopertha dominica (F.) in wheat stored for 9 months at 30 degrees C and 55 and 70% relative humidity. The aim was to investigate the potential of spinosad for protecting wheat from R. dominica during long-term storage in warm climates. Wheat was treated with spinosad at 0.1, 0.5 and 1 mg kg(-1) grain and sampled after 0, 1.5, 3, 4.5, 6, 7.5 and 9 months of storage for bioassays and residue analyses. Residues were estimated to have declined by 30% during 9 months of storage at 30 degrees C and there was no effect of relative humidity. Spinosad applied at 0.5 or 1 mg kg(-1) was completely effective for 9 months, with 100% adult mortality after 14 days of exposure and no five F, adults produced. Adult mortality was < 100% in some samples of wheat treated with 0.1 mg kg(-1) of spinosad, and live progeny were produced in all samples treated at this level. The results show that spinosad is likely to be an effective grain protectant against R. dominica in wheat stored in warm climates.
Resumo:
Two geometrid moths Chiasmia inconspicua and Chiasmia assimilis, identified as potential biological control agents for prickly acacia Acacia nilotica subsp. indica, were collected in Kenya and imported into quarantine facilities in Australia where laboratory cultures were established. Aspects of the biologies of both insects were studied and CLIMEX® models indicating the climatically favourable areas of Australia were developed. Host range tests were conducted using an approved test list of 74 plant species and no-choice tests of neonate larvae placed on both cut foliage and potted plants. C. inconspicua developed through to adult on prickly acacia and, in small numbers, Acacia pulchella. C. assimilis developed through to adult on prickly acacia and also in very small numbers on A. pulchella, A. deanei, A. decurrens, and A. mearnsii. In all experiments, the response on prickly acacia could be clearly differentiated from the responses on the non-target species. Both insects were approved for release in Australia. Over a three-year period releases were made at multiple sites in north Queensland, almost all in inland areas. There was no evidence of either insect's establishment and both colonies were terminated. A new colony of C. assimilis was subsequently established from insects collected in South Africa and releases of C. assimilis from this new colony were made into coastal and inland infestations of prickly acacia. Establishment was rapid at one coastal site and the insect quickly spread to other infestations. Establishment at one inland area was also confirmed in early 2006. The establishment in coastal areas supported a CLIMEX model that indicated that the climate of coastal areas was more suitable than inland areas.
Resumo:
The influence of a once only administration of a metabolite of vitamin D3 (HY [middle dot] D(R)-25-hydroxy vitamin D3) on myofibrillar meat tenderness in Australian Brahman cattle was studied. Ninety-six Brahman steers of three phenotypes (Indo-Brazil, US and US/European) and with two previous hormonal growth promotant (HGP) histories (implanted or not implanted with Compudose(R)) were fed a standard feedlot ration for 70 d. Treatment groups of 24 steers were offered daily 10 g/head HY [middle dot] D(R) (125 mg 25-hydroxyvitamin D3) for 6, 4, or 2 d before slaughter. One other group of 24 steers was given the basal diet without HY [middle dot] D(R). Feed lot performance, blood and muscle samples and carcass quality data were collected at slaughter. Calcium, magnesium, potassium, sodium, iron and Vitamin D3 metabolites were measured in plasma and longissimus dorsi muscle. Warner-Bratzler (WB) shear force (peak force, initial yield) and other objective meat quality measurements were made on the longissimus dorsi muscle of each steer after ageing for 1, 7 and 14 d post-mortem at 0-2 [deg]C.There were no significant effects of HY [middle dot] D(R) supplements on average daily gain (ADG, 1.28-1.45 kg/d) over the experimental period. HY [middle dot] D(R) supplements given 6 d prior to slaughter resulted in significantly higher (P (R)) by phenotype/HGP interaction for peak force (P = 0.028), in which Indo-Brazil steers without previous HGP treatment responded positively (increased tenderness) to HY [middle dot] D(R) supplements at 2 d when compared with Indo-Brazil steers previously given HGP. There were no significant effects of treatment on other phenotypes. HY [middle dot] D(R) supplements did not affect muscle or plasma concentrations of calcium, potassium or sodium, but did significantly decrease plasma magnesium and iron concentrations when given 2 d before slaughter. There were no detectable amounts of 25-hydroxyvitamin D3 in the blood or muscle of any cattle at slaughter.
Resumo:
Heavy wheel traffic causes soil compaction, which adversely affects crop production and may persist for several years. We applied known compaction forces to entire plots annually for 5 years, and then determined the duration of the adverse effects on the properties of a Vertisol and the performance of crops under no-till dryland cropping with residue retention. For up to 5 years after a final treatment with a 10 Mg axle load on wet soil, soil shear strength at 70-100 mm and cone index at 180-360 mm were significantly (P < 0.05) higher than in a control treatment, and soil water storage and grain yield were lower. We conclude that compaction effects persisted because (1) there were insufficient wet-dry cycles to swell and shrink the entire compacted layer, (2) soil loosening by tillage was absent and (3) there were fewer earthworms in the compacted soil. Compaction of dry soil with 6 Mg had little effect at any time, indicating that by using wheel traffic only when the soil is dry, problems can be avoided. Unfortunately such a restriction is not always possible because sowing, tillage and harvest operations often need to be done when the soil is wet. A more generally applicable solution, which also ensures timely operations, is the permanent separation of wheel zones and crop zones in the field--the practice known as controlled traffic farming. Where a compacted layer already exists, even on a clay soil, management options to hasten repair should be considered, e.g. tillage, deep ripping, sowing a ley pasture or sowing crop species more effective at repairing compacted soil.
Resumo:
The ability of blocking ELISAs and haemagglutination-inhibition (HI) tests to detect antibodies in sera from chickens challenged with either Avibacterium (Haemophilus) paragallinarum isolate Hp8 (serovar A) or H668 (serovar C) was compared. Serum samples were examined weekly over the 9 weeks following infection. The results showed that the positive rate of serovar A specific antibody in the B-ELISA remained at 100% from the second week to the ninth week. In chickens given the serovar C challenge, the highest positive rate of serovar C specific antibody in the B-ELISA appeared at the seventh week (60% positive) and was then followed by a rapid decrease. The B-ELISA gave significantly more positives at weeks 2, 3, 7, 8 and 9 post-infection for serovar A and at week 7 post-infection for serovar C. In qualitative terms, for both serovar A and serovar C infections, the HI tests gave a lower percentage of positive sera at all time points except at 9 weeks post-infection with serovar C. The highest positive rate for serovar A HI antibodies was 70% of sera at the fourth and fifth weeks post-infection. The highest rate of serovar C HI antibodies was 20% at the fifth and sixth weeks post-infection. The results have provided further evidence of the suitability of the serovar A and C B-ELISAs for the diagnosis of infectious coryza.
Resumo:
As part of preliminary work aimed at the development of a formulated diet for the mud crab, Scylla serrata, an experiment was conducted with juvenile mud crabs (95.65±2.17 g) to determine apparent digestibility coefficients (ADC) for cellulose, fish meal, shrimp meal, blood meal, soybean meal, wheat flour and cod liver oil. Apparent digestibility coefficients for dry matter (ADCdm), energy (ADCenergy) and protein (ADC protein) were in the ranges 70.0-95.7%, 77.4-97.1% and 57.7-97.9% respectively. Soybean meal had the highest ADCdm and wheat flour had the lowest value (P<0.05), while the ADCdm for fish meal, blood meal and shrimp meal were not different (P?0.05). Similarly, soybean meal had the same ADCenergy as that of fish meal, but higher than those of cod liver oil, blood meal and shrimp meal (P<0.05). Moreover, the ADC protein for blood meal or shrimp meal were not significantly different from fish meal (P?0.05); nevertheless, they were lower than that of soybean meal and higher than that of wheat flour (P<0.05). Of significant interest was the ADCdm (78.0%) and ADCenergy (77.4%) for cellulose, which indicates that plant-based nutrient sources may well be a useful component of formulated diets for mud crabs.
Resumo:
Alimentary carbohydrate overload is a significant cause of laminitis in horses and is correlated with drastic shifts in the composition of hindgut microbiota. Equine hindgut streptococcal species (EHSS), predominantly Streptococcus lutetiensis, have been shown to be the most common microorganisms culturable from the equine caecum prior to the onset of laminitis. However, the inherent biases of culture-based methods are estimated to preclude up to 70% of the normal caecal microbiota. The objective of this study was to evaluate bacterial population shifts occurring in the equine caecum throughout the course of oligofructose-induced laminitis using several culture-independent techniques and to correlate these with caecal lactate, volatile fatty acid and degrees of polymerization 3-7 fructo-oligosaccharide concentrations. Our data conclusively show that of the total microbiota present in the equine hindgut, the EHSS S. lutetiensis is the predominant microorganism that proliferates prior to the onset of laminitis, utilizing oligofructose to produce large quantities of lactate. Population shifts in lactobacilli and Escherichia coli subpopulations occur secondarily to the EHSS population shifts, thus confirming that lactobacilli and coliforms have no role in laminitis. A large, curved, Gram-negative rod previously observed during the early phases of laminitis induction was most closely related to the Anaerovibrio genus and most likely represents a new, yet to be cultured, genus and species. Correlation of fluorescence in situ hybridization and quantitative real-time PCR results provide evidence supporting the hypothesis that laminitis is associated with the death en masse and rapid cell lysis of EHSS. If EHSS are lysed, liberated cellular components may initiate laminitis.
Resumo:
BACKGROUND: The psocid Liposcelis bostrychophila Badonnel, is a widespread, significant pest of stored commodities, has developed strong resistance to phosphine, the major grain disinfestant. The aim was to develop effective fumigation protocols to control this resistant pest. RESULTS: Time to population extinction of all life stages (TPE) in days was evaluated at a series of phosphine concentrations and temperatures at two relative humidities. Regression analysis showed that temperature, concentration and relative humidity all contributed significantly to describing TPE (P < 0.001, R2 = 0.95), with temperature being the dominant variable, accounting for 74.4% of the variation. Irrespective of phosphine concentration, TPE was longer at lower temperatures and high humidity (70% RH) and shorter at higher temperatures and low humidity (55% RH). At any concentration of phosphine, a combination of higher temperature and lower humidity provides the shortest fumigation period to control resistant L. bostrychophila. For example, 19 and 11 days of fumigation are required at 15 °C and 70% RH at 0.1 and 1.0 mg L-1 of phosphine respectively, whereas only 4 and 2 days are required at 35 °C and 55% RH for the same respective concentrations. CONCLUSIONS: The developed fumigation protocols will provide industry with flexibility in application of phosphine.