4 resultados para Burser, Joachim, 1583-1639
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In Australia, disease caused by betanodavirus has been reported in an increasing number of cultured finfish since the first report of mortalities in 1990. Partial coat protein gene sequences from the T2 or T4 regions of 8 betanodaviruses from barramundi Lates calcarifer, sleepy cod Oxyeleotris lineolata, striped trumpeter Latris lineata, barramundi cod Cromileptes altivelis, Australian bass Macquaria novemaculata and gold-spotted rockcod Epinephelus coioides from several Australian states were determined. Analysis of the 606 bp nucleotide sequences of the T2 region of 4 isolates demonstrated the close relationship with isolates from the red-spotted grouper nervous necrosis virus (RGNNV) genotype and the Cluster Ia subtype. Comparison of a smaller 289 bp sequence from the T4 region identified 2 distinct groupings of the Australian isolates within the RGNNV genotype. Isolates from barramundi from the Northern Territory, barramundi, sleepy cod, barramundi cod and gold-spotted rockcod from Queensland, and striped trumpeter from Tasmania shared a 96.2 to 99.7%, nucleotide identity with each other. These isolates were most similar to the RGNNV genotype Cluster Ia. Isolates from Australian bass from New South Wales and from barramundi from South Australia shared a 98.6% sequence identity with each other. However, these isolates only shared an 85.8 to 87.9%, identity with the other Australian isolates and representative RGNNV isolates. The closest nucleotide identity to sequences reported in the literature for the New South Wales and South Australian isolates was to an Australian barramundi isolate (Ba94Aus) from 1994. These 2 Australian isolates formed a new subtype within the RGNNV genotype, which is designated as Cluster Ic.
Resumo:
Research into the genetics of whole herd profitability has been a focus of the Beef Cooperative Research Centre for Beef Genetic Technologies over the past decade and it has been identified that measures of male reproduction may offer a potential indirect means of selecting for improved female reproduction. This paper describes the experimental design and provides a descriptive analysis of an array of male traits in Brahman and Tropical Composite genotypes managed under the medium to high stress, semi-extensive to extensive production systems of northern Australia. A total of 1639 Brahman and 2424 Tropical Composite bulls with known pedigrees, bred and raised in northern Australia, were evaluated for a comprehensive range of productive and reproductive traits. These included blood hormonal traits (luteinising hormone, inhibin and insulin-like growth factor-I); growth and carcass traits (liveweight, body condition score, ultrasound scanned 12-13th rib fat, rump P8 fat, eye muscle area and hip height); adaptation traits (flight time and rectal temperature); and a bull breeding soundness evaluation (leg and hoof conformation, sheath score, length of everted prepuce, penile anatomy, scrotal circumference, semen mass activity, sperm motility and sperm morphology). Large phenotypic variation was evident for most traits, with complete overlap between genotypes, indicating that there is likely to be a significant opportunity to improve bull fertility traits through management and bull selection.
Resumo:
A total of 4063 young bulls of two tropical genotypes (1639 Brahman and 2424 Tropical Composite) raised in northern Australia were evaluated for a comprehensive range of production and reproduction traits up to 24 months of age. Prior to weaning, peripheral blood concentrations of luteinising hormone (LH) and inhibin were measured at 4 months of age. At weaning (6 months) blood insulin-like growth factor-1 (IGF-I) and flight time were recorded. Body composition traits of fat depth and eye-muscle area were determined by ultrasonography at 15 months of age when additional measurements of liveweight, hip height and body condition score were recorded. Bull breeding soundness was evaluated at similar to 12, 18 and 24 months of age when measurements of scrotal circumference, sheath score, semen mass activity, progressive motility of individual sperm and percent morphologically normal sperm were recorded. Magnitude of heritability and genetic correlations changed across time for some traits. Heritability of LH, inhibin, IGF-I and of 18-month scrotal circumference, mass activity, progressive motility and percent normal sperm was 0.31, 0.74, 0.44, 0.75, 0.24, 0.15 and 0.25, respectively, for Brahmans and 0.48, 0.72, 0.36, 0.43, 0.13, 0.15 and 0.20, respectively, for Tropical Composites. Inhibin and IGF-I had moderate genetic association with percent normal sperm at 24 months in Brahmans but low to negligible associations in Tropical Composites. Body condition score in Brahmans and sperm motility (mass and individual) traits in both genotypes had moderate to strong genetic correlation with percent normal sperm and may prove useful candidates for indirect selection. There is scope to increase scrotal circumference by selection and this will be associated with favourable correlated responses of improved semen quality in both genotypes. The lack of genetic antagonism among bull traits indicates that selection for improved semen quality will not adversely affect other production traits.
Resumo:
Concepts of agricultural sustainability and possible roles of simulation modelling for characterising sustainability were explored by conducting, and reflecting on, a sustainability assessment of rain-fed wheat-based systems in the Middle East and North Africa region. We designed a goal-oriented, model-based framework using the cropping systems model Agricultural Production Systems sIMulator (APSIM). For the assessment, valid (rather than true or false) sustainability goals and indicators were identified for the target system. System-specific vagueness was depicted in sustainability polygons-a system property derived from highly quantitative data-and denoted using descriptive quantifiers. Diagnostic evaluations of alternative tillage practices demonstrated the utility of the framework to quantify key bio-physical and chemical constraints to sustainability. Here, we argue that sustainability is a vague, emergent system property of often wicked complexity that arises out of more fundamental elements and processes. A 'wicked concept of sustainability' acknowledges the breadth of the human experience of sustainability, which cannot be internalised in a model. To achieve socially desirable sustainability goals, our model-based approach can inform reflective evaluation processes that connect with the needs and values of agricultural decision-makers. Hence, it can help to frame meaningful discussions, from which actions might emerge.