2 resultados para Brain degeneration

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a study towards elucidating the role of aromatases during puberty in female grey mullet, the cDNAs of the brain (muCyp19b) and ovarian (muCyp19a) aromatase were isolated by RT-PCR and their relative expression levels were determined by quantitative real-time RT-PCR. The muCyp19a ORF of 1515 bp encoded 505 predicted amino acid residues, while that of muCyp19b was 1485 bp and encoded 495 predicted amino acid residues. The expression level of muCyp19b significantly increased in the brain as puberty advanced; however, its expression level in the pituitary increased only slightly with pubertal development. In the ovary, the muCyp19a expression level markedly increased as puberty progressed. The promoter regions of the two genes were also isolated and their functionality evaluated in vitro using luciferase as the reporter gene. The muCyp19a promoter sequence (650 bp) contained a consensus TATA box and putative transcription factor binding sites, including two half EREs, an SF-1, an AhR/Arnt, a PR and two GATA-3s. The muCyp19b promoter sequence (2500 bp) showed consensus TATA and CCAAT boxes and putative transcription binding sites, namely: a PR, an ERE, a half ERE, a SP-1, two GATA-binding factor, one half GATA-1, two C/EBPs, a GRE, a NFkappaB, three STATs, a PPAR/RXR, an Ahr/Arnt and a CRE. Basal activity of serially deleted promoter constructs transiently transfected into COS-7, [alpha]T3 and TE671 cells demonstrated the enhancing and silencing roles of the putative transcription factor binding sites. Quinpirole, a dopamine agonist, significantly reduced the promoter activity of muCyp19b in TE671. The results suggest tissue-specific regulation of the muCyp19 genes and a putative alternative promoter for muCyp19b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. Increasing dietary intake of lutein- and zeaxanthin-rich foods is a potential means of preventing, or at least slowing the progression of AMD. Zeaxanthin levels in tropical super-sweetcorn was increased from 1.1 to 11.9 µg/g FW through conventional breeding and selection, associated with both an increase in the proportion of zeaxanthin relative to other carotenoids, and a general increase in carotenoid synthesis. Increasing zeaxanthin was associated with a colour shift from traditional ‘canary-yellow’ kernels to a golden-orange colour. Kernel colour was most closely correlated (r2=69%) with an increase in beta-arm carotenoid concentration. Consumer analysis revealed that prior to any knowledge of zeaxanthin-related health benefit, consumers would readily purchase both yellow and gold cobs. Once the health benefit was explained, this extended to deep-gold cobs. Colour difference between regular yellow sweetcorn and high-zeaxanthin sweetcorn could potentially be used as a visual means of differentiating high-zeaxanthin sweetcorn in the marketplace.