2 resultados para Bounds

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A genetic solution to breech strike control is attractive, as it is potentially permanent, cumulative, would not involve increased use of chemicals and may ultimately reduce labour inputs. There appears to be significant opportunity to reduce the susceptibility of Merinos to breech strike by genetic means although it is unlikely that in the short term breeding alone will be able to confer the degree of protection provided by mulesing and tail docking. Breeding programmes that aim to replace surgical techniques of flystrike prevention could potentially: reduce breech wrinkle; increase the area of bare skin in the perineal area; reduce tail length and wool cover on and near the tail; increase shedding of breech wool; reduce susceptibility to internal parasites and diarrhoea; and increase immunological resistance to flystrike. The likely effectiveness of these approaches is reviewed and assessed here. Any breeding programme that seeks to replace surgical mulesing and tail docking will need to make sheep sufficiently resistant that the increased requirement for other strike management procedures remains within practically acceptable bounds and that levels of strike can be contained to ethically acceptable levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainable management of native pastures requires an understanding of what the bounds of pasture composition, cover and soil surface condition are for healthy pastoral landscapes to persist. A survey of 107 Aristida/Bothriochloa pasture sites in inland central Queensland was conducted. The sites were chosen for their current diversity of tree cover, apparent pasture condition and soil type to assist in setting more objective bounds on condition ‘states’ in such pastures. Assessors’ estimates of pasture condition were strongly correlated with herbage mass (r = 0.57) and projected ground cover (r = 0. 58), and moderately correlated with pasture crown cover (r = 0.35) and tree basal area (r = 0.32). Pasture condition was not correlated with pasture plant density or the frequency of simple guilds of pasture species. The soil type of Aristida/Bothriochloa pasture communities was generally hard-setting, low in cryptogam cover but moderately covered with litter and projected ground cover (30–50%). There was no correlation between projected ground cover of pasture and estimated ground-level cover of plant crowns. Tree basal area was correlated with broad categories of soil type, probably because greater tree clearing has occurred on the more fertile, heavy-textured clay soils. Of the main perennial grasses, some showed strong soil preferences, for example Tripogon loliiformis for hard-setting soils and Dichanthium sericeum for clays. Common species, such as Chrysopogon fallax and Heteropogon contortus, had no strong soil preference. Wiregrasses (Aristida spp.) tended to be uncommon at both ends of the estimated pasture condition scale whereas H. contortus was far more common in pastures in good condition. Sedges (Cyperaceae) were common on all soil types and for all pasture condition ratings. Plants identified as increaser species were Tragus australianus, daisies (Asteraceae) and potentially toxic herbaceous legumes such as Indigofera spp. and Crotalaria spp. Pasture condition could not be reliably predicted based on the abundance of a single species or taxon but there may be scope for using integrated data for four to five ecologically contrasting plants such as Themeda triandra with daisies, T. loliiformis and flannel weeds (Malvaceae).