16 resultados para Blue Crabs

em eResearch Archive - Queensland Department of Agriculture


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Limb-loss in crustaceans can reduce moult increment and delay or advance the timing of moulting, both aspects that are likely to impact upon soft-shell crab production. Pond-reared blue swimmer crabs Portunus pelagicus were harvested and maintained in a crab shedding system. The wet weight, carapace width (CW) and the occurrence of limb-loss were assessed before stocking in the shedding system and after each of the next three moults. Many of the crabs were initially missing one or two limbs and these did not grow as much as the crabs that were intact at the start of the trial. Despite its strong correlation with wet weight, CW changes proved to be misleading. Limb-loss reduced the %CW increment but not the per cent weight increment (where the later is calculated from the actual pre-moult weight). Pre-moult weight explained much of the variation in post-moult weight, with crabs moulting to approximately double their weight. Limb-loss reduced 'growth' and production from the pond because it reduced pre-moult weight but limb-loss did not alter the weight change on shedding a given weight of crabs, although some of that change now included regeneration of limbs. One can hypothesize that much of the size variation seen in pond-reared crabs may be due to accumulated effects of repeated limb-loss, rather than genetic variation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blue swimmer crabs (Portunus pelagicus) are an economically important crab caught in baited traps throughout the Indo-west Pacific and Mediterranean. In Australia they are traditionally caught using rigid wire traps (approximate to pots) but there has been a recent increase in the use of collapsible pots constructed from polyethylene trawl mesh. Two experiments were conducted in Moreton Bay, Queensland, to determine the ghost fishing potential of lost crab pots on both target and bycatch species and to evaluate the differences between traditional and contemporary pot designs. A lost contemporary, collapsible trawl mesh pot will catch between 3 and 223 R pelagicus per year after the bait has been exhausted, while a traditional wire mesh pot would catch 11-74 crabs peryear. As most fishers now use the collapsible trawl mesh pots, ghost fishing mortality could be as high as 111,811-670,866 crabs per year. Bycatch retention was also higher in contemporary designs. Periods of strong winds appeared to increase the ghost fishing potential of lost pots. The use of escape gaps, larger mesh sizes and construction options that allow for the deterioration of entrance funnels to minimise ghost fishing are recommended to reduce environmental impacts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two laboratory experiments were carried out to quantify the mortality and physiological responses of juvenile blue swimmer crabs (Portunus pelagicus) after simulated gillnet entanglement, air exposure, disentanglement, and discarding. In both experiments, all but control blue swimmer crabs were entangled in 1-m(2) gillnet panels for 1 h, exposed to air for 2 min, subjected to various treatments of disentanglement ranging between the forceful removal of none, one, two, and four appendages, then "discarded" into individual experimental tanks and monitored for 10 d. In Experiment 1, mortalities were associated with the number of appendages removed and the occurrence of unsealed wounds. In Experiment 2, live blue swimmer crabs were sampled for blood at 2 min and 6, 24, and 72 h post-discarding to test for the effects of disentanglement and appendage removal on total haemocyte counts, clotting times, protein levels (by refractive index), and blood ion concentrations. Compared with blue swimmer crabs that had sealed or no wounds, those with unsealed wounds had lower total haemocyte counts, protein, and calcium concentrations and increased clotting ties and magnesium and sodium levels. Induced autotomy, as opposed to the arbitrary, forceful removal of a appendages has the potential to minimize the mortality and stress of discarded, juvenile blue swimmer crabs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The significance of cannibalism in the diet of juvenile pond-cultured blue swimmer crabs (Portunus pelagicus (L.)) was investigated using dual stable isotope analysis of carbon and nitrogen. In a laboratory feeding experiment, δ15N demonstrated a constant trophic shift (Δδ15N ≈+ 1.6‰), and therefore seemed to be a reliable indicator for assessing trophic position for P. pelagicus. This agrees with previously reported trends. Difference in growth rate did not seem to influence δ15N values. In contrast, δ13C did not display consistent shifts between trophic levels (range of Δδ13C: + 1 to + 1.7‰). The results from the pond experiment showed that larger individuals had a more enriched δ15N than smaller individuals, which, when compared to the results from the laboratory experiment, indicates that larger individuals were at a higher trophic level. This is most likely due to cannibalism prevailing in the pond rather than a direct result of faster growth rate. Cannibalistic behaviour might further increase growth, resulting in the observed positive correlation between size and δ15N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasites of some decapod crustaceans are known to cause sterilisation of their hosts, and can thus have an important impact on the population dynamics of infested species. Blue swimmer crabs (Portunus pelagicus) collected in three areas around Moreton Bay, Australia were examined for the presence of epizoic barnacles in their branchial chambers and on their carapace. Of the 952 crabs inspected 92% were infested with Octolasmis spp. The mean number of barnacles (predominantly Octolasmis warwickii) per carapace and gill chamber (mainly O. angulata) were 2.35 and 71.1, respectively. Barnacle infestation of gills was found to differ significantly by area, season and sex with the deeper offshore areas exhibiting the highest number of barnacles. The distribution within the hosts showed barnacles were more likely to be distributed in areas closer to the inhalant aperture. Highest abundances were found on the proximal surface of the hypobranchial side of gills 3, 4 and 5. Host moult stage and parasitism by Sacculina granifera were also found to affect the abundance of epizoic barnacles in some areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive nursery systems are designed to culture mud crab postlarvae through a critical phase in preparation for stocking into growout systems. This study investigated the influence of stocking density and provision of artificial habitat on the yield of a cage culture system. For each of three batches of postlarvae, survival, growth and claw loss were assessed after each of three nursery phases ending at crab instars C1/C2, C4/C5 and C7/C8. Survival through the first phase was highly variable among batches with a maximum survival of 80% from megalops to a mean crab instar of 1.5. Stocking density between 625 and 2300 m-2 did not influence survival or growth in this first phase. Stocking densities tested in phases 2 and 3 were 62.5, 125 and 250 m -2. At the end of phases 2 and 3, there were five instar stages present, representing a more than 20-fold size disparity within the populations. Survival became increasingly density-sensitive following the first phase, with higher densities resulting in significantly lower survival (phase 2: 63% vs. 79%; phase 3: 57% vs. 64%). The addition of artificial habitat in the form of pleated netting significantly improved survival at all densities. The mean instar attained by the end of phase 2 was significantly larger at a lower stocking density and without artificial habitat. No significant effect of density or habitat on harvest size was detected in phase 3. The highest incidence of claw loss was 36% but was reduced by lowering stocking densities and addition of habitat. For intensive commercial production, yield can be significantly increased by addition of a simple net structure but rapidly decreases the longer crablets remain in the nursery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The red-finned blue-eye (Scaturiginichthys vermeilipinnis) is endemic to a single complex of springs emanating from the Great Artesian Basin, Australia. The species has been recorded as naturally occurring in eight separate very shallow (generally <20 mm) springs, with a combined wetland area of ~0.3 ha. Since its discovery in 1990, five red-finned blue-eye (RFBE) populations have been lost and subsequent colonisation has occurred in two spring wetlands. Current population size is estimated at <3000 individuals. Artesian bores have reduced aquifer pressure, standing water levels and spring-flows in the district. There is evidence of spatial separation within the spring pools where RFBE and the introduced fish gambusia (Gambusia holbrooki) co-occur, although both species are forced together when seasonal extremes affect spring size and water temperature. Gambusia was present in four of the five springs where RFBE populations have been lost. Four out of the five remaining subpopulations of RFBE are Gambusia free. Circumstantial evidence suggests that gambusia is a major threat to red-finned blue-eyes. The impact of Gambusia is probably exacerbated by domestic stock (cattle and sheep), feral goats and pigs that utilise the springs and can negatively affect water quality and flow patterns. Three attempts to translocate RFBE to apparently suitable springs elsewhere within the complex have failed. Opportunities to mitigate threats are discussed, along with directions for future research to improve management of this extremely threatened fish and habitat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farmed crab production in 2005 reached 660,000 tonnes globally of which virtually all was produced in Asia. The freshwater Chinese mitten crab Eriocheir japonica sinensis accounts for two thirds of global crab production with the remainder, estuarine portunid crabs such as Scylla species. Initially reliant upon harvest of wild juveniles, the adoption of hatchery methods to supply “seed” makes a significant increase in aquaculture production possible. Many fundamental husbandry issues such as feeding and reproduction are only now receiving research attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying the stress factors imposed on mud crab to develop stress minimisation practices for improving survival, hence increasing revenue for the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fishing industry of Queensland, embracing both marine and fresh waters, has weathered some rough seas over the past decade. Now rich resources of fish and crustacean species, many of which have as yet an unquantified potential, are being over exploited by fishermen who choose to ignore regulations in order to make quick dollars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-Technical Summary Seafood CRC Project 2009/774. Harvest strategy evaluations and co-management for the Moreton Bay Trawl Fishery Principal Investigator: Dr Tony Courtney, Principal Fisheries Biologist Fisheries and Aquaculture, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Level B1, Ecosciences Precinct, Joe Baker St, Dutton Park, Queensland 4102 Email: tony.courtney@daff.qld.gov.au Project objectives: 1. Review the literature and data (i.e., economic, biological and logbook) relevant to the Moreton Bay trawl fishery. 2. Identify and prioritise management objectives for the Moreton Bay trawl fishery, as identified by the trawl fishers. 3. Undertake an economic analysis of Moreton Bay trawl fishery. 4. Quantify long-term changes to fishing power for the Moreton Bay trawl fishery. 5. Assess priority harvest strategies identified in 2 (above). Present results to, and discuss results with, Moreton Bay Seafood Industry Association (MBSIA), fishers and Fisheries Queensland. Note: Additional, specific objectives for 2 (above) were developed by fishers and the MBSIA after commencement of the project. These are presented in detail in section 5 (below). The project was an initiative of the MBSIA, primarily in response to falling profitability in the Moreton Bay prawn trawl fishery. The analyses were undertaken by a consortium of DAFF, CSIRO and University of Queensland researchers. This report adopted the Australian Standard Fish Names (http://www.fishnames.com.au/). Trends in catch and effort The Moreton Bay otter trawl fishery is a multispecies fishery, with the majority of the catch composed of Greasyback Prawns (Metapenaeus bennettae), Brown Tiger Prawns (Penaeus esculentus), Eastern King Prawns (Melicertus plebejus), squid (Uroteuthis spp., Sepioteuthis spp.), Banana Prawns (Fenneropenaeus merguiensis), Endeavour Prawns (Metapenaeus ensis, Metapenaeus endeavouri) and Moreton Bay bugs (Thenus parindicus). Other commercially important byproduct includes blue swimmer crabs (Portunus armatus), three-spot crabs (Portunus sanguinolentus), cuttlefish (Sepia spp.) and mantis shrimp (Oratosquilla spp.). Logbook catch and effort data show that total annual reported catch of prawns from the Moreton Bay otter trawl fishery has declined to 315 t in 2008 from a maximum of 901 t in 1990. The number of active licensed vessels participating in the fishery has also declined from 207 in 1991 to 57 in 2010. Similarly, fishing effort has fallen from a peak of 13,312 boat-days in 1999 to 3817 boat-days in 2008 – a 71% reduction. The declines in catch and effort are largely attributed to reduced profitability in the fishery due to increased operational costs and depressed prawn prices. The low prawn prices appear to be attributed to Australian aquacultured prawns and imported aquacultured vannamei prawns, displacing the markets for trawl-caught prawns, especially small species such as Greasyback Prawns which traditionally dominated landings in Moreton Bay. In recent years, the relatively high Australian dollar has resulted in reduced exports of Australian wild-caught prawns. This has increased supply on the domestic market which has also suppressed price increases. Since 2002, Brown Tiger Prawns have dominated annual reported landings in the Moreton Bay fishery. While total catch and effort in the bay have declined to historically low levels, the annual catch and catch rates of Brown Tiger Prawns have been at record highs in recent years. This appears to be at least partially attributed to the tiger prawn stock having recovered from excessive effort in previous decades. The total annual value of the Moreton Bay trawl fishery catch, including byproduct, is about $5 million, of which Brown Tiger Prawns account for about $2 million. Eastern King Prawns make up about 10% of the catch and are mainly caught in the bay from October to December as they migrate to offshore waters outside the bay where they contribute to a large mono-specific trawl fishery. Some of the Eastern King Prawns harvested in Moreton Bay may be growth overfished (i.e., caught below the size required to maximise yield or value), although the optimum size-at-capture was not determined in this study. Banana Prawns typically make up about 5% of the catch, but can exceed 20%, particularly following heavy rainfall. Economic analysis of the fishery From the economic survey, cash profits were, on average, positive for both fleet segments in both years of the survey. However, after the opportunity cost of capital and depreciation were taken into account, the residual owner-operator income was relatively low, and substantially lower than the average share of revenue paid to employed skippers. Consequently, owner-operators were earning less than their opportunity cost of their labour, suggesting that the fleets were economically unviable in the longer term. The M2 licensed fleet were, on average, earning similar boat cash profits as the T1/M1 fleet, although after the higher capital costs were accounted for the T1/M1 boats were earning substantially lower returns to owner-operator labour. The mean technical efficiency for the fleet as a whole was estimated to be 0.67. That is, on average, the boats were only catching 67 per cent of what was possible given their level of inputs (hours fished and hull units). Almost one-quarter of observations had efficiency scores above 0.8, suggesting a substantial proportion of the fleet are relatively efficient, but some are also relatively inefficient. Both fleets had similar efficiency distributions, with median technical efficiency score of 0.71 and 0.67 for the M2 and T1/M1 boats respectively. These scores are reasonably consistent with other studies of prawn trawl fleets in Australia, although higher average efficiency scores were found in the NSW prawn trawl fleet. From the inefficiency model, several factors were found to significantly influence vessel efficiency. These included the number of years of experience as skipper, the number of generations that the skipper’s family had been fishing and the number of years schooling. Skippers with more schooling were significantly more efficient than skippers with lower levels of schooling, consistent with other studies. Skippers who had been fishing longer were, in fact, less efficient than newer skippers. However, this was mitigated in the case of skippers whose family had been involved in fishing for several generations, consistent with other studies and suggesting that skill was passed through by families over successive generations. Both the linear and log-linear regression models of total fishing effort against the marginal profit per hour performed reasonably well, explaining between 70 and 84 per cent of the variation in fishing effort. As the models had different dependent variables (one logged and the other not logged) this is not a good basis for model choice. A better comparator is the square root of the mean square error (SMSE) expressed as a percentage of the mean total effort. On this criterion, both models performed very similarly. The linear model suggests that each additional dollar of average profits per hour in the fishery increases total effort by around 26 hours each month. From the log linear model, each percentage increase in profits per hour increases total fishing effort by 0.13 per cent. Both models indicate that economic performance is a key driver of fishing effort in the fishery. The effect of removing the boat-replacement policy is to increase individual vessel profitability, catch and effort, but the overall increase in catch is less than that removed by the boats that must exit the fishery. That is, the smaller fleet (in terms of boat numbers) is more profitable but the overall catch is not expected to be greater than before. This assumes, however, that active boats are removed, and that these were also taking an average level of catch. If inactive boats are removed, then catch of the remaining group as a whole could increase by between 14 and 17 per cent depending on the degree to which costs are reduced with the new boats. This is still substantially lower than historical levels of catch by the fleet. Fishing power analyses An analysis of logbook data from 1988 to 2010, and survey information on fishing gear, was performed to estimate the long-term variation in the fleet’s ability to catch prawns (known as fishing power) and to derive abundance estimates of the three most commercially important prawn species (i.e., Brown Tiger, Eastern King and Greasyback Prawns). Generalised linear models were used to explain the variation in catch as a function of effort (i.e., hours fished per day), vessel and gear characteristics, onboard technologies, population abundance and environmental factors. This analysis estimated that fishing power associated with Brown Tiger and Eastern King Prawns increased over the past 20 years by 10–30% and declined by approximately 10% for greasybacks. The density of tiger prawns was estimated to have almost tripled from around 0.5 kg per hectare in 1988 to 1.5 kg/ha in 2010. The density of Eastern King Prawns was estimated to have fluctuated between 1 and 2 kg per hectare over this time period, without any noticeable overall trend, while Greasyback Prawn densities were estimated to have fluctuated between 2 and 6 kg per hectare, also without any distinctive trend. A model of tiger prawn catches was developed to evaluate the impact of fishing on prawn survival rates in Moreton Bay. The model was fitted to logbook data using the maximum-likelihood method to provide estimates of the natural mortality rate (0.038 and 0.062 per week) and catchability (which can be defined as the proportion of the fished population that is removed by one unit of effort, in this case, estimated to be 2.5 ± 0.4 E-04 per boat-day). This approach provided a method for industry and scientists to develop together a realistic model of the dynamics of the fishery. Several aspects need to be developed further to make this model acceptable to industry. Firstly, there is considerable evidence to suggest that temperature influences prawn catchability. This ecological effect should be incorporated before developing meaningful harvest strategies. Secondly, total effort has to be allocated between each species. Such allocation of effort could be included in the model by estimating several catchability coefficients. Nevertheless, the work presented in this report is a stepping stone towards estimating essential fishery parameters and developing representative mathematical models required to evaluate harvest strategies. Developing a method that allowed an effective discussion between industry, management and scientists took longer than anticipated. As a result, harvest strategy evaluations were preliminary and only included the most valuable species in the fishery, Brown Tiger Prawns. Additional analyses and data collection, including information on catch composition from field sampling, migration rates and recruitment, would improve the modelling. Harvest strategy evaluations As the harvest strategy evaluations are preliminary, the following results should not be adopted for management purposes until more thorough evaluations are performed. The effects, of closing the fishery for one calendar month, on the annual catch and value of Brown Tiger Prawns were investigated. Each of the 12 months (i.e., January to December) was evaluated. The results were compared against historical records to determine the magnitude of gain or loss associated with the closure. Uncertainty regarding the trawl selectivity was addressed using two selectivity curves, one with a weight at 50% selection (S50%) of 7 g, based on research data, and a second with S50% of 14 g, put forward by industry. In both cases, it was concluded that any monthly closure after February would not be beneficial to the industry. The magnitude of the benefit of closing the fishery in either January or February was sensitive to which mesh selectivity curve that was assumed, with greater benefit achieved when the smaller selectivity curve (i.e., S50% = 7 g) was assumed. Using the smaller selectivity (S50% = 7 g), the expected increase in catch value was 10–20% which equates to $200,000 to $400,000 annually, while the larger selectivity curve (S50% = 14 g) suggested catch value would be improved by 5–10%, or $100,000 to $200,000. The harvest strategy evaluations showed that greater benefits, in the order of 30–60% increases in the tiger annual catch value, could have been obtained by closing the fishery early in the year when annual effort levels were high (i.e., > 10,000 boat-days). In recent years, as effort levels have declined (i.e., ~4000 boat-days annually), expected benefits from such closures are more modest. In essence, temporal closures offer greater benefit when fishing mortality rates are high. A spatial analysis of Brown Tiger Prawn catch and effort was also undertaken to obtain a better understanding of the prawn population dynamics. This indicated that, to improve profitability of the fishery, fishers could consider closing the fishery in the period from June to October, which is already a period of low profitability. This would protect the Brown Tiger Prawn spawning stock, increase catch rates of all species in the lucrative pre-Christmas period (November–December), and provide fishers with time to do vessel maintenance, arrange markets for the next season’s harvest, and, if they wish, work at other jobs. The analysis found that the instantaneous rate of total mortality (Z) for the March–June period did not vary significantly over the last two decades. As the Brown Tiger Prawn population in Moreton Bay has clearly increased over this time period, an interesting conclusion is that the instantaneous rate of natural mortality (M) must have increased, suggesting that tiger prawn natural mortality may be density-dependent at this time of year. Mortality rates of tiger prawns for June–October were found to have decreased over the last two decades, which has probably had a positive effect on spawning stocks in the October–November spawning period. Abiotic effects on the prawns The influence of air temperature, rainfall, freshwater flow, the southern oscillation index (SOI) and lunar phase on the catch rates of the four main prawn species were investigated. The analyses were based on over 200,000 daily logbook catch records over 23 years (i.e., 1988–2010). Freshwater flow was more influential than rainfall and SOI, and of the various sources of flow, the Brisbane River has the greatest volume and influence on Moreton Bay prawn catches. A number of time-lags were also considered. Flow in the preceding month prior to catch (i.e., 30 days prior, Logflow1_30) and two months prior (31–60 days prior, Logflow31_60) had strong positive effects on Banana Prawn catch rates. Average air temperature in the preceding 4-6 months (Temp121_180) also had a large positive effect on Banana Prawn catch rates. Flow in the month immediately preceding catch (Logflow1_30) had a strong positive influence on Greasyback Prawn catch rates. Air temperature in the preceding two months prior to catch (Temp1_60) had a large positive effect on Brown Tiger Prawn catch rates. No obvious or marked effects were detected for Eastern King Prawns, although interestingly, catch rates declined with increasing air temperature 4–6 months prior to catch. As most Eastern King Prawn catches in Moreton Bay occur in October to December, the results suggest catch rates decline with increasing winter temperatures. In most cases, the prawn catch rates declined with the waxing lunar phase (high luminance/full moon), and increased with the waning moon (low luminance/new moon). The SOI explains little additional variation in prawn catch rates (~ <2%), although its influence was higher for Banana Prawns. Extrapolating findings of the analyses to long-term climate change effects should be interpreted with caution. That said, the results are consistent with likely increases in abundance in the region for the two tropical species, Banana Prawns and Brown Tiger Prawns, as coastal temperatures rise. Conversely, declines in abundance could be expected for the two temperate species, Greasyback and Eastern King Prawns. Corporate management structures An examination of alternative governance systems was requested by the industry at one of the early meetings, particularly systems that may give them greater autonomy in decision making as well as help improve the marketing of their product. Consequently, a review of alternative management systems was undertaken, with a particular focus on the potential for self-management of small fisheries (small in terms of number of participants) and corporate management. The review looks at systems that have been implemented or proposed for other small fisheries internationally, with a particular focus on self-management as well as the potential benefits and challenges for corporate management. This review also highlighted particular opportunities for the Moreton Bay prawn fishery. Corporate management differs from other co-management and even self-management arrangements in that ‘ownership’ of the fishery is devolved to a company in which fishers and government are shareholders. The company manages the fishery as well as coordinates marketing to ensure that the best prices are received and that the catch taken meets the demands of the market. Coordinated harvesting will also result in increased profits, which are returned to fishers in the form of dividends. Corporate management offers many of the potential benefits of an individual quota system without formally implementing such a system. A corporate management model offers an advantage over a self-management model in that it can coordinate both marketing and management to take advantage of this unique geographical advantage. For such a system to be successful, the fishery needs to be relatively small and self- contained. Small in this sense is in terms of number of operators. The Moreton Bay prawn fishery satisfies these key conditions for a successful self-management and potentially corporate management system. The fishery is small both in terms of number of participants and geography. Unlike other fisheries that have progressed down the self-management route, the key market for the product from the Moreton Bay fishery is right at its doorstep. Corporate management also presents a number of challenges. First, it will require changes in the way fishers operate. In particular, the decision on when to fish and what to catch will be taken away from the individual and decided by the collective. Problems will develop if individuals do not join the corporation but continue to fish and market their own product separately. While this may seem an attractive option to fishers who believe they can do better independently, this is likely to be just a short- term advantage with an overall long-run cost to themselves as well as the rest of the industry. There are also a number of other areas that need further consideration, particularly in relation to the allocation of shares, including who should be allocated shares (e.g. just boat owners or also some employed skippers). Similarly, how harvesting activity is to be allocated by the corporation to the fishers. These are largely issues that cannot be answered without substantial consultation with those likely to be affected, and these groups cannot give these issues serious consideration until the point at which they are likely to become a reality. Given the current structure and complexity of the fishery, it is unlikely that such a management structure will be feasible in the short term. However, the fishery is a prime candidate for such a model, and development of such a management structure in the future should be considered as an option for the longer term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Life history characteristics were used to determine the stock structure of the polynemid Eleutheronema tetradactylum across northern Australia. Growth, estimated from back-calculated length-at-age from sagittal otoliths, and length at sex change were estimated from samples collected from 12 different locations across western, northern and eastern Australia between 2007 and 2009. Comparison of back-calculated length-at-age, growth and length at sex change between locations revealed significant variation in the life-history characteristics of E. tetradactylum across northern Australia, with significant differences detected in 43 of 45 location comparisons. Differences in otolith size relative to fish length also existed amongst locations. No differences in other morphometric relationships were detected. The results of this study provide evidence for a high degree of spatial population subdivision for E. tetradactylum across northern Australia, the finding of which has implications for E. tetradactylum fisheries throughout its range, and provides a biological basis for spatial management of the species in Australia. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mud crabs (Scylla spp.) are intensively caught throughout South-East Asia and support a very substantial commercial, recreational fishing and aquaculture industry. Identification of individual animals is important to improve understanding and management of this species. However, tagging of crustaceans is difficult as they frequently molt and internal tags can pose a hazard to consumers. In this pilot study we tested a new method combining passive integrated transponder tags and t-bar tags externally. 45 giant mud crabs (Scylla serrata) were captured from the wild and kept in tanks for a maximum of 10 months. We inserted tags into the abdomen of 35 giant mud crabs and tested a modified method where the combined t-bar/PIT-tag was inserted into the muscle tissue of the rear leg between the dorsal carapace plate and the top of the abdominal flap. Tagged crabs with the modified method showed 85% tag retention for molting crabs. We tested the same method in the field where 852 individuals were tagged with combined t-bar/PIT-tags of which 82 were recaptured showing 100% tag retention but without any evidence of molting having occurred. The tested method of combined t-bar/PIT-tags in giant mud crabs can further improve monitoring for wild and aquaculture populations and can be deployed widely with low cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mud crabs (Scylla spp.) are intensively caught throughout South-East Asia and support a very substantial commercial, recreational fishing and aquaculture industry. Identification of individual animals is important to improve understanding and management of this species. However, tagging of crustaceans is difficult as they frequently molt and internal tags can pose a hazard to consumers. In this pilot study we tested a new method combining passive integrated transponder tags and t-bar tags externally. 45 giant mud crabs (Scylla serrata) were captured from the wild and kept in tanks for a maximum of 10 months. We inserted tags into the abdomen of 35 giant mud crabs and tested a modified method where the combined t-bar/PIT-tag was inserted into the muscle tissue of the rear leg between the dorsal carapace plate and the top of the abdominal flap. Tagged crabs with the modified method showed 85% tag retention for molting crabs. We tested the same method in the field where 852 individuals were tagged with combined t-bar/PIT-tags of which 82 were recaptured showing 100% tag retention but without any evidence of molting having occurred. The tested method of combined t-bar/PIT-tags in giant mud crabs can further improve monitoring for wild and aquaculture populations and can be deployed widely with low cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A serological survey of cattle from throughout Queensland and sheep from cattle/sheep interface areas was conducted to determine the distribution and prevalence of antibodies to Bluetongue virus serotypes. This information allowed preliminary designation of arbovirusfree zones and identification of livestock populations at greatest risk to introduction of exotic Bluetongue viruses. Throughout the state antibodies were detected to only serotypes I and 21. In cattle prevalence decreased with increasing distance from the coast ringing from 73% in the far north to less than I% in the southwest. In sheep, prevalence of bluetongue antibodies in the major cattle/sheep interface areas in the north-west and central Queensland ranged from O% to 5%. A system of strategically placed sentinel herds of 10 young serologically negative cattle was established across northern Australia to monitor the distribution and seasonality of bluetongue viruses. Initially 23 herds were located in Queensland, 4 in Northern Territory and 2 in Western Australia but by the completion of the project the number of herds in Queensland had been reduced to 12. No bluetongue virus activity was detected in Western Australia or Northern Territory herds throughout the project although testing of one herd in Northern Territory with a history of bluetongue activity was not done after June 1991. In Queensland, activity to bluetongue serotypes I and 21 was detected in all years of the project. Transmissions occurred predominantly in the period April to September and were more widespread in wetter years' The pathogenic bluetongue setotypes previously isolated from the Northern Territory have not spread to adjoining States.