20 resultados para Biomass burning
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Methane is a potent greenhouse gas with a global warming potential ∼28 times that of carbon dioxide. Consequently, sources and sinks that influence the concentration of methane in the atmosphere are of great interest. In Australia, agriculture is the primary source of anthropogenic methane emissions (60.4% of national emissions, or 3260kt-1methaneyear-1, between 1990 and 2011), and cropping and grazing soils represent Australia's largest potential terrestrial methane sink. As of 2011, the expansion of agricultural soils, which are ∼70% less efficient at consuming methane than undisturbed soils, to 59% of Australia's land mass (456Mha) and increasing livestock densities in northern Australia suggest negative implications for national methane flux. Plant biomass burning does not appear to have long-term negative effects on methane flux unless soils are converted for agricultural purposes. Rice cultivation contributes marginally to national methane emissions and this fluctuates depending on water availability. Significant available research into biological, geochemical and agronomic factors has been pertinent for developing effective methane mitigation strategies. We discuss methane-flux feedback mechanisms in relation to climate change drivers such as temperature, atmospheric carbon dioxide and methane concentrations, precipitation and extreme weather events. Future research should focus on quantifying the role of Australian cropping and grazing soils as methane sinks in the national methane budget, linking biodiversity and activity of methane-cycling microbes to environmental factors, and quantifying how a combination of climate change drivers will affect total methane flux in these systems.
Resumo:
This paper reports an experiment undertaken to examine the impact of burning in spring together with reduced grazing pressure on the dynamics of H. contortus and Aristida spp. In H. contortus pasture in south-eastern Queensland. The overall results indicate that spring burning in combination with reduced grazing pressure had no marked effect on the density of either grass species. This was attributed to 2 factors. Firstly, extreme drought conditions restricted any increase in H. contortus seedling establishment despite the presence of an adequate soil seed bank prior to summer; and secondly, some differences occurred in the response to fire of the diverse taxonomic groupings in the species of Aristida spp. present at the study site. This study concluded that it is necessary to identify appropriate taxonomic units within the Aristida genus and that, where appropriate, burning in spring to manage pasture composition should be conducted under favorable rainfall conditions using seasonal forecasting indicators such as the Southern Oscillation Index
Resumo:
The size of the soil microbial biomass carbon (SMBC) has been proposed as a sensitive indicator for measuring the adverse effects of contaminants on the soil microbial community. In this study of Australian agricultural systems, we demonstrated that field variability of SMBC measured using the fumigation-extraction procedure limited its use as a robust ecotoxicological endpoint. The SMBC varied up to 4-fold across control samples collected from a single field site, due to small-scale spatial heterogeneity in the soil physicochemical environment. Power analysis revealed that large numbers of replicates (3-93) were required to identify 20% or 50% decreases in the size of the SMBC of contaminated soil samples relative to their uncontaminated control samples at the 0.05% level of statistical significance. We question the value of the routine measurement of SMBC as an ecotoxicological endpoint at the field scale, and suggest more robust and predictive microbiological indicators.
Resumo:
In grassland reserves, managed disturbance is often necessary to maintain plant species diversity. We carried out experiments to determine the impact of fire, kangaroo grazing, mowing and disc ploughing on grassland species richness and composition in a nature reserve in semi-arid eastern Australia. Vegetation response was influenced by winter-spring drought after establishment of the experiments, but moderate rainfall followed in late summer-autumn. Species composition varied greatly between sampling times, and the variability due to rainfall differences between seasons and years was greater than the effects of fire, kangaroo grazing, mowing or disc ploughing. In the fire experiment, species richness and composition recovered more rapidly after spring than autumn burning. Species richness and composition were similar to control sites within 12 months of burning and mowing, suggesting that removal of the dominant grass canopy is unnecessary to enhance plant diversity. Two fires (separated by 3 years) and post-fire kangaroo grazing had only minor influence on species richness and composition. Even disc ploughing caused only a small reduction in native richness. The minor impact of ploughing was explained by the small areas that were ploughed, the once-off nature of the treatment, and the high degree of natural movement and cracking in these shrink-swell soils. Recovery of the composition and richness of these grasslands was rapid because of the high proportion of perennial species that resprout vegetatively after fire and mowing. There appears to be little conservation benefit from fire, mowing or ploughing ungrazed areas, as we could identify no native plant species dependent on frequent disturbance for persistence in this grassland community. However, the ability of the Astrebla- and Dichanthium-dominated grasslands to recover quickly after disturbance, given favourable seasonal conditions, suggests that they are well adapted to natural disturbances (e.g. droughts, fire, flooding and native grazing).
Resumo:
Wiregrasses (Aristida spp.) are becoming more prevalent, causing reduced productivity, in the black speargrass (Heterpogon contortus) pastures of south-east Queensland. Burning a native pasture of poor botanical composition (with a high proportion of wiregrass) in spring, and resting a heavily-grazed pasture also of poor composition, both improved the condition of these pastures. However, burning in late summer did not. Three months after burning in spring, relative density of wiregrass had decreased and that of a desirable species, black speargrass, had increased. However, this effect did not persist under continuous and heavy grazing. Resting increased threefold both the yield of pasture and the proportion of black speargrass, and decreased the proportion of wiregrass by two-thirds. Burning in late summer had no effect on the relative density of black speargrass but relative density of wiregrass increased. Selective grazing after burning in late summer kept this pasture in very poor condition for 14 months. These results suggest that the best way to increase the proportion of black speargrass and reduce the proportion of wiregrass in a pasture would be to burn in spring and then rest the pasture
Resumo:
Introduced as an ornamental vine, cat's claw creeper Dolichandra unguis-cati (syn. Macfadyena unguis-cati) has invaded coastal and subcoastal areas of subtropical eastern Australia. Two varieties have been indentified, one of which ('short-pod') is found throughout south-eastern Australia, while the other ('long-pod') appears to be restricted to several sites in south-eastern Queensland. We compared the growth and biomass allocation patterns of the two varieties in the field over a 22-month period to determine if a higher growth rate and/or more efficient allocation of biomass may contribute to this disparity in distribution. The long-pod variety produced greater aboveground and total biomass than the short-pod variety in both riparian and non-riparian zones. Belowground the two varieties produced a similar number of tubers and overall biomass, though the long-pod variety allocated a smaller portion of its carbon belowground. High growth rates and greater biomass allocation aboveground are characteristic of invasive species, allowing them to outcompete and crowd out existing vegetation. There was no significant site by variety interaction, an indication of consistency in variety performance across riparian and non-riparian sites. Results from our study suggest that differences in growth and biomass allocations are unlikely to have contributed to the disparity in distribution of the two varieties. Despite currently occupying a relatively small range, the long-pod variety may be a more adept invader than the short-pod variety, and could become more prevalent in the future. © 2012 CSIRO.
Resumo:
In the northern grain and cotton region of Australia, poor crop growth after long periods of fallow, called 'long-fallow' disorder, is caused by a decline of natural arbuscular-mycorrhizal fungi (AMF). When cotton was grown in large pots containing 22 kg of Vertisol from a field recently harvested from cotton in Central Queensland, plants in pasteurised soil were extremely stunted compared with plants in unpasteurised soil. We tested the hypothesis that this extreme stunting was caused by the absence of AMF and examined whether such stunted plants could recover from subsequent treatment with AMF spores and/or P fertiliser. At 42 days after sowing, the healthy cotton growing in unpasteurised soil had 48% of its root-length colonised with AMF, whereas the stunted cotton had none. After inoculation with AMF spores (6 spores/g soil of Glomus mosseae) and/or application of P fertiliser (50 mg P/kg soil) at 45 days after sowing, the stunted plants commenced to improve about 25 days after treatment, and continued until their total dry matter and seed cotton production equalled that of plants growing in unpasteurised soil with natural AMF. In contrast, non-mycorrhizal cotton grown without P fertiliser remained stunted throughout and produced no bolls and only 1% of the biomass of mycorrhizal cotton. Even with the addition of P fertiliser, non-mycorrhizal cotton produced only 64% of the biomass and 58% of the seed cotton (lint + seed) of mycorrhizal cotton plants. These results show that cotton is highly dependent on AMF for P nutrition and growth in Vertisol (even with high rates of P fertiliser), but can recover from complete lack of AMF and consequent stunting during at least the first 45 days of growth when treated with AMF spores and/or P fertiliser. This corroborates field observations in the northern region that cotton may recover from long-fallow disorder caused by low initial levels of AMF propagules in the soil as the AMF colonisation of its roots increases during the growing season.
Resumo:
We used a long-term fire experiment in south-east Queensland, Australia, to determine the effects of frequent prescribed burning and fire exclusion on understorey vegetation (<7.5 m) richness and density in Eucalyptus pilularis forest. Our study provided a point in time assessment of the standing vegetation and soil-stored vegetation at two experimental sites with treatments of biennial burning, quadrennial burning since 19711972 and no burning since 1969. Vegetation composition, density and richness of certain plant groups in the standing and soil-stored vegetation were influenced by fire treatments. The density of resprouting plants <3 m in height was higher in the biennially burnt treatment than in the unburnt treatment, but resprouters 37.5 m in height were absent from the biennial burning treatment. Obligate seeder richness and density in the standing vegetation was not significantly influenced by the fire treatments, but richness of this plant group in the seed bank was higher in the quadrennial treatment at one site and in the long unburnt treatment at the other site. Long unburnt treatments had an understorey of rainforest species, while biennial burning at one site and quadrennial burning at the other site were associated with greater standing grass density relative to the unburnt treatment. This difference in vegetation composition due to fire regime potentially influences the flammability of the standing understorey vegetation. Significant interactions between fire regime and site, apparent in the standing and soil-stored vegetation, demonstrate the high degree of natural variability in vegetation community responses to fire regimes.
Resumo:
We investigated the effects of annual burning since 1952, triennial burning since 1973, fire exclusion since 1946 and infrequent wildfire (one fire in 61 years) on woody understorey vegetation in a dry sclerophyll eucalypt forest, south-eastern Queensland, Australia. We determined the influence of these treatments, and other site variables (rainfall, understorey density, topsoil C : N ratio, tree basal area, distance to watercourse and burn coverage) on plant taxa density, richness and composition. The richness of woody understorey taxa 0–1 m in height was not affected by burning treatments, but richness of woody plants 1–7.5 m in height was lower in the annually burnt treatment than in the triennially burnt treatment from 1989 to 2007. Fire frequency and other site variables explained 34% of the variation in taxa composition (three taxon groups and 10 species), of which 33% of the explained variance was explained by fire treatment and 46% was explained by other site variables. Annual burning between 1974 and 1993 was associated with lower understorey densities mainly due to reduced densities of eucalypts 1–7.5 m in height. Triennial burning during the same period was associated with higher densities of eucalypts 0–7.5 m in height relative to the annually burnt and unburnt treatments. Most woody taxa persisted in the frequently burnt treatments through resprouting mechanisms (e.g. lignotuberous regeneration), and fire patchiness associated with low-intensity burning was also found to be important. Persistence of plants <1 m tall demonstrates the resilience of woody taxa to repeated burning in this ecosystem, although they mainly exist in a suppressed growth state under annual burning.
Resumo:
Previous short-term studies predict that the use of fire to manage lantana (Lantana camara) may promote its abundance. We tested this prediction by examining long-term recruitment patterns of lantana in a dry eucalypt forest in Australia from 1959 to 2007 in three fire frequency treatments: repeated annual burning, repeated triennial burning and long unburnt. The dataset was divided into two periods (1959–1972, 1974–2007) due to logging that occurred at the study site between 1972 and 1974 and the establishment of the triennial burn treatment in 1973. Our results showed that repeated burning decreased lantana regeneration under an annual burn regime in the pre- and post-logging periods and maintained low levels of regeneration in the triennial burn compartment during the post-logging period. In the absence of fire, lantana recruitment exhibited a dome-shaped response over time, with the total population peaking in 1982 before declining to 2007. In addition to fire regime, soil pH and carbon to nitrogen ratio, the density of taller conspecifics and the interaction between rainfall and fire regime were found to influence lantana regeneration change over time. The results suggest that the reported positive association between fire disturbance and abundance of lantana does not hold for all forest types and that fire should be considered as part of an integrated weed management strategy for lantana in more fire-tolerant ecosystems.
Resumo:
An understanding of processes regulating wheat floret and grain number at higher temperatures is required to better exploit genetic variation. In this study we tested the hypothesis that at higher temperatures, a reduction in floret fertility is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble carbohydrates (WSC). Four recombinant inbred lines contrasting for stem WSC were grown at 20/10 degrees C and 11 h photoperiod until terminal spikelet, and then continued in a factorial combination of 20/10 degrees C or 28/14 degrees C with 11 h or 16 h photoperiod until anthesis. Across environments, High WSC lines had more grains per spike associated with more florets per spike. The number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher in High WSC lines. At booting, High WSC lines had higher fixed C-13 and higher levels of expression of genes involved in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14 degrees C and 16 h. Genotypic and environmental action on floret fertility and grain set was summarised in a model.
Resumo:
To quantify the impact that planting indigenous trees and shrubs in mixed communities (environmental plantings) have on net sequestration of carbon and other environmental or commercial benefits, precise and non-biased estimates of biomass are required. Because these plantings consist of several species, estimation of their biomass through allometric relationships is a challenging task. We explored methods to accurately estimate biomass through harvesting 3139 trees and shrubs from 22 plantings, and collating similar datasets from earlier studies, in non-arid (>300mm rainfallyear-1) regions of southern and eastern Australia. Site-and-species specific allometric equations were developed, as were three types of generalised, multi-site, allometric equations based on categories of species and growth-habits: (i) species-specific, (ii) genus and growth-habit, and (iii) universal growth-habit irrespective of genus. Biomass was measured at plot level at eight contrasting sites to test the accuracy of prediction of tonnes dry matter of above-ground biomass per hectare using different classes of allometric equations. A finer-scale analysis tested performance of these at an individual-tree level across a wider range of sites. Although the percentage error in prediction could be high at a given site (up to 45%), it was relatively low (<11%) when generalised allometry-predictions of biomass was used to make regional- or estate-level estimates across a range of sites. Precision, and thus accuracy, increased slightly with the level of specificity of allometry. Inclusion of site-specific factors in generic equations increased efficiency of prediction of above-ground biomass by as much as 8%. Site-and-species-specific equations are the most accurate for site-based predictions. Generic allometric equations developed here, particularly the generic species-specific equations, can be confidently applied to provide regional- or estate-level estimates of above-ground biomass and carbon. © 2013 Elsevier B.V.
Resumo:
Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every two years (2yrB), burning every four years (4yrB) and no burning (NB). C:N ratios in freshly fallen litter were 29-42% higher and C:P ratios were 6-25% lower for 2yrB than NB during decomposition, with correspondingly lower 2yrB N:P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N:P ratios were similar to the overall litter N:P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2yrB than NB while 4yrB was generally intermediate between 2yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2yrB (72±2% mass remaining at the end of experiment) than for 4yrB (59±3%) and NB (62±3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2yrB) decoupled N and P cycling, as manifested in litter C:N:P stoichiometry and in microbial biomass N:P ratio and enzymatic activities. These data indicate that fire induced a transient shift to N-limited ecosystem conditions during the post-fire recovery phase. This article is protected by copyright. All rights reserved.
Resumo:
Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.