7 resultados para Biomass, dry mass
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the "milk" and "dough" growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.
Resumo:
SummaryThis scoping study assesses the contribution that woody biomass could make to feedstock supply for an aviation biofuel industry in Queensland. The inland 600?900 mm rainfall zone, including the Fitzroy Basin region, is identified as an area that is particularly worthy of closer study as it has potential for supply of woody biomass from existing native regrowth (brigalow and other species) as well as from new plantings. New analyses carried out for this study of Corymbia citriodora subsp. variegata trials suggest biomass plantings could produce harvestable yield of aboveground dry mass of about 85 t ha?1 over a 10-year rotation at relatively low-rainfall (600?750 mm mean annual precipitation) sites and about 115 t ha?1 at medium-rainfall (750?900 mm) sites. Estimates of productivity for native regrowth suggest potential productivity should be around 40 t ha?1 during the initial decade after clearing when systems are managed for bioenergy rather than grazing. In this paper, potential production systems are described, and sustainability issues are briefly considered. It is concluded that more detailed studies focused particularly on biomass production would be worthwhile, and further research requirements are briefly discussed.
Resumo:
The reliable assessment of macrophyte biomass is fundamental for ecological research and management of freshwater ecosystems. While dry mass is routinely used to determine aquatic plant biomass, wet (fresh) mass can be more practical. We tested the accuracy and precision of wet mass measurements by using a salad spinner to remove surface water from four macrophyte species differing in growth form and architectural complexity. The salad spinner aided in making precise and accurate wet mass with less than 3% error. There was also little difference between operators, with a user bias estimated to be below 5%. To achieve this level of precision, only 10–20 turns of the salad spinner are needed. Therefore, wet mass of a sample can be determined in less than 1 min. We demonstrated that a salad spinner is a rapid and economical technique to enable precise and accurate macrophyte wet mass measurements and is particularly suitable for experimental work. The method will also be useful for fieldwork in situations when sample sizes are not overly large.
Resumo:
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580-663 mm and 466-656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R 2 = 0.89) and ETc/ETp (R 2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.
Resumo:
Data on catch sizes, catch rates, length-frequency and age composition from the Australian east coast tailor fishery are analysed by three different population dynamic models: a surplus production model, an age-structured model, and a model in which the population is structured by both age and length. The population is found to be very heavily exploited, with its ability to reproduce dependent on the fishery’s incomplete selectivity of one-year-old fish. Estimates of recent harvest rates (proportion of fish available to the fishery that are actually caught in a single year) are over 80%. It is estimated that only 30–50% of one-year-old fish are available to the fishery. Results from the age-length-structured model indicate that both exploitable biomass (total mass of fish selected by the fishery) and egg production have fallen to about half the levels that prevailed in the 1970s, and about 40% of virgin levels. Two-year-old fish appear to have become smaller over the history of the fishery. This is assumed to be due to increased fishing pressure combined with non-selectivity of small one-year-old fish, whereby the one-year-old fish that survive fishing are small and grow into small two-year-old fish the following year. An alternative hypothesis is that the stock has undergone a genetic change towards smaller fish; the true explanation is unknown. The instantaneous natural mortality rate of tailor is hypothesised to be higher than previously thought, with values between 0.8 and 1.3 yr–1 consistent with the models. These values apply only to tailor up to about three years of age, and it is possible that a lower value applies to fish older than three. The analysis finds no evidence that fishing pressure has yet affected recruitment. If a recruitment downturn were to occur, however, under current management and fishing pressure there is a strong chance that the fishery would need a complete closure for several years to recover, and even then recovery would be uncertain. Therefore it is highly desirable to better protect the spawning stock. The major recommendations are • An increase in the minimum size limit from 30cm to 40cm in order to allow most one-year-old fish to spawn, and • An experiment on discard mortality to gauge the proportion of fish between 30cm and 40cm that are likely to survive being caught and released by recreational line fishers (the dominant component of the fishery, currently harvesting roughly 1000t p.a. versus about 200t p.a. from the commercial fishery).
Resumo:
Seed cotton yield and morphological changes in leaf growth were examined under drying soil with different phosphorus (P) concentrations in a tropical climate. Frequent soil drying is likely to induce a decrease in nutrients particularly P due to reduced diffusion and poor uptake, in addition to restrictions in available water, with strong interactive effects on plant growth and functioning. Increased soil P in field and in-ground soil core studies increased the seed cotton yield and related morphological growth parameters in a drying soil, with hot (daily maximum temperature >33°C) and dry conditions (relative humidity, 25% to 35%), particularly during peak boll formation and filling stage. The soil water content in the effective rooting zone (top 0.4 m) decreased to -1.5 MPa by day 5 of the soil drying cycle. However, the increased seed cotton yield for the high-P plants was closely related to increasing leaf area with increased P supply. Plant height, leaf fresh mass and leaf area per plant were positively related to the leaf P%, which increased with increasing P supply. Low P plants were lower in plant height, leaf area, and leaf tissue water in the drying soil. Individual leaf area and the water content of the fresh leaf (ratio of dry mass to fresh mass) were significantly dependent on leaf P%.
Resumo:
Ammonia volatilisation from manure materials within poultry sheds can adversely affect production, and also represents a loss of fertiliser value from the spent litter. This study sought to compare the ability of alum and bentonite to decrease volatilisation losses of ammonia from spent poultry litter. An in-vessel volatilisation trial with air flushing, ammonia collection, and ammonia analysis was conducted over 64 days to evaluate the mitigation potential of these two materials. Water-saturated spent litter was incubated at 25°C in untreated condition (control) or with three treatments: an industry-accepted rate of alum [4% Al2(SO4)3·18H2O by dry mass of litter dry mass; ALUM], air-dry bentonite (127% by dry mass; BENT), or water-saturated bentonite (once again at 127% by dry mass; SATBENT). A high proportion of the nitrogen contained in the untreated spent litter was volatilised (62%). Bentonite additions were superior to alum additions at retaining spent litter ammonia (nitrogen losses: 15%, SATBENT; 34%, BENT; 54%, ALUM). Where production considerations favour comparable high rates of bentonite addition (e.g. where the litter is to be re-formulated as a fertiliser), this clay has potential to decrease ammonia volatilisation either in-shed or in spent litter stockpiles or formulated products, without the associated detrimental effect of alum on phosphorus availability.