8 resultados para Beef - Industry
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Many beef producers within the extensive cattle industry of northern Australia attempt to maintain a constant herd size from year-to-year (fixed stocking), whereas others adjust stock numbers to varying degrees annually in response to changes in forage supply. The effects of these strategies on pasture condition and cattle productivity cannot easily be assessed by grazing trials. Simulation studies, which include feedbacks of changes to pasture condition on cattle liveweight gain, can extend the results of grazing trials both spatially and temporally. They can compare a large number of strategies, over long periods of time, for a range of climate periods, at locations which differ markedly in climate. This simulation study compared the pasture condition and cattle productivity achieved by fixed stocking at the long-term carrying capacity with that of 55 flexible stocking strategies at 28 locations across Queensland and the Northern Territory. Flexible stocking strategies differed markedly in the degree they increased or decreased cattle stocking rates after good and poor pasture growing seasons, respectively. The 28 locations covered the full range in average annual rainfall and inter-annual rainfall variability experienced across northern Australia. Constrained flexibility, which limited increases in stocking rates after good growing seasons to 10% but decreased them by up to 20% after poor growing seasons, provides sustainable productivity gains for cattle producers in northern Australia. This strategy can improve pasture condition and increase cattle productivity relative to fixed stocking at the long-term carrying capacity, and its capacity to do this was greatest in the semiarid rangeland regions that contain the majority of beef cattle in northern Australia. More flexible stocking strategies, which also increased stocking rates after good growing seasons by only half as much as they decreased them after poor growing seasons, were equally sustainable and more productive than constrained flexibility, but are often impractical at property and industry scales. Strategies with the highest limits (e.g. 70%) for both annual increases and decreases in stocking rates could achieve higher cattle productivity, but this was at the expense of pasture condition and was not sustainable. Constrained flexible stocking, with a 10% limit for increases and a 20% limit for decreases in stocking rates annually, is a risk-averse adaptation to high and unpredictable rainfall variability for the extensive beef industry of northern Australia. © Australian Rangeland Society 2016.
Resumo:
The Rangeland Journal – Climate Clever Beef special issue examines options for the beef industry in northern Australia to contribute to the reduction in global greenhouse gas (GHG) emissions and to engage in the carbon economy. Relative to its gross value (A$5 billion), the northern beef industry is responsible for a sizable proportion of national reportable GHG emissions (8–10%) through enteric methane, savanna burning, vegetation clearing and land degradation. The industry occupies large areas of land and has the potential to impact the carbon cycle by sequestering carbon or reducing carbon loss. Furthermore, much of the industry is currently not achieving its productivity potential, which suggests that there are opportunities to improve the emissions intensity of beef production. Improving the industry’s GHG emissions performance is important for its environmental reputation and may benefit individual businesses through improved production efficiency and revenue from the carbon economy. The Climate Clever Beef initiative collaborated with beef businesses in six regions across northern Australia to better understand the links between GHG emissions and carbon stocks, land condition, herd productivity and profitability. The current performance of businesses was measured and alternate management options were identified and evaluated. Opportunities to participate in the carbon economy through the Australian Government’s Emissions Reduction Fund (ERF) were also assessed. The initiative achieved significant producer engagement and collaboration resulting in practice change by 78 people from 35 businesses, managing more than 1 272 000 ha and 132 000 cattle. Carbon farming opportunities were identified that could improve both business performance and emissions intensity. However, these opportunities were not without significant risks, trade-offs and limitations particularly in relation to business scale, and uncertainty in carbon price and the response of soil and vegetation carbon sequestration to management. This paper discusses opportunities for reducing emissions, improving emission intensity and carbon sequestration, and outlines the approach taken to achieve beef business engagement and practice change. The paper concludes with some considerations for policy makers.
Resumo:
Approximately 5% of Australian national greenhouse gas (GHG) emissions are derived from the northern beef industry. Improving the reproductive performance of cows has been identified as a key target for increasing profitability, and this higher efficiency is also likely to reduce the GHG emissions intensity of beef production. The effects of strategies to increase the fertility of breeding herds and earlier joining of heifers as yearlings were studied on two properties at Longreach and Boulia in western Queensland. The beef production, GHG emissions, emissions intensity and profitability were investigated and compared with typical management in the two regions. Overall weaning rates achieved on the two properties were 79% and 74% compared with typical herd weaning rates of 58% in both regions. Herds with high reproductive performance had GHG emissions intensities (t CO2-e t–1 liveweight sold) 28% and 22% lower than the typical herds at Longreach and Boulia, with most of the benefit from higher weaning rates. Farm gross margin analysis showed that it was more profitable, by $62 000 at Longreach and $38 000 at Boulia, to utilise higher reproductive performance to increase the amount of liveweight sold with the same number of adult equivalents compared with reducing the number of adult equivalents to maintain the same level of liveweight sold and claiming a carbon credit for lower farm emissions. These gains achieved at two case study properties which had different rainfall, country types, and property sizes suggest similar improvements can be made on-farm across the Mitchell Grass Downs bioregion of northern Australia.
Resumo:
Previous studies of greenhouse gas emissions (GHGE) from beef production systems in northern Australia have been based on models of ‘steady-state’ herd structures that do not take into account the considerable inter-annual variation in liveweight gain, reproduction and mortality rates that occurs due to seasonal conditions. Nor do they consider the implications of flexible stocking strategies designed to adapt these production systems to the highly variable climate. The aim of the present study was to quantify the variation in total GHGE (t CO2e) and GHGE intensity (t CO2e/t liveweight sold) for the beef industry in northern Australia when variability in these factors was considered. A combined GRASP–Enterprise modelling platform was used to simulate a breeding–finishing beef cattle property in the Burdekin River region of northern Queensland, using historical climate data from 1982–2011. GHGE was calculated using the method of Australian National Greenhouse Gas Inventory. Five different stocking-rate strategies were simulated with fixed stocking strategies at moderate and high rates, and three flexible stocking strategies where the stocking rate was adjusted annually by up to 5%, 10% or 20%, according to pasture available at the end of the growing season. Variation in total annual GHGE was lowest in the ‘fixed moderate’ (~9.5 ha/adult equivalent (AE)) stocking strategy, ranging from 3799 to 4471 t CO2e, and highest in the ‘fixed high’ strategy (~5.9 ha/AE), which ranged from 3771 to 7636 t CO2e. The ‘fixed moderate’ strategy had the least variation in GHGE intensity (15.7–19.4 t CO2e/t liveweight sold), while the ‘flexible 20’ strategy (up to 20% annual change in AE) had the largest range (10.5–40.8 t CO2e/t liveweight sold). Across the five stocking strategies, the ‘fixed moderate’ stocking-rate strategy had the highest simulated perennial grass percentage and pasture growth, highest average rate of liveweight gain (121 kg/steer), highest average branding percentage (74%) and lowest average breeding-cow mortality rate (3.9%), resulting in the lowest average GHGE intensity (16.9 t CO2e/t liveweight sold). The ‘fixed high’ stocking rate strategy (~5.9 ha/AE) performed the poorest in each of these measures, while the three flexible stocking strategies were intermediate. The ‘fixed moderate’ stocking strategy also yielded the highest average gross margin per AE carried and per hectare. These results highlight the importance of considering the influence of climate variability on stocking-rate management strategies and herd performance when estimating GHGE. The results also support a body of previous work that has recommended the adoption of moderate stocking strategies to enhance the profitability and ecological stability of beef production systems in northern Australia.
Resumo:
This paper explores the effect of using regional data for livestock attributes on estimation of greenhouse gas (GHG) emissions for the northern beef industry in Australia, compared with using state/territory-wide values, as currently used in Australia’s national GHG inventory report. Regional GHG emissions associated with beef production are reported for 21 defined agricultural statistical regions within state/territory jurisdictions. A management scenario for reduced emissions that could qualify as an Emissions Reduction Fund (ERF) project was used to illustrate the effect of regional level model parameters on estimated abatement levels. Using regional parameters, instead of state level parameters, for liveweight (LW), LW gain and proportion of cows lactating and an expanded number of livestock classes, gives a 5.2% reduction in estimated emissions (range +12% to –34% across regions). Estimated GHG emissions intensity (emissions per kilogram of LW sold) varied across the regions by up to 2.5-fold, ranging from 10.5 kg CO2-e kg–1 LW sold for Darling Downs, Queensland, through to 25.8 kg CO2-e kg–1 LW sold for the Pindan and North Kimberley, Western Australia. This range was driven by differences in production efficiency, reproduction rate, growth rate and survival. This suggests that some regions in northern Australia are likely to have substantial opportunities for GHG abatement and higher livestock income. However, this must be coupled with the availability of management activities that can be implemented to improve production efficiency; wet season phosphorus (P) supplementation being one such practice. An ERF case study comparison showed that P supplementation of a typical-sized herd produced an estimated reduction of 622 t CO2-e year–1, or 7%, compared with a non-P supplemented herd. However, the different model parameters used by the National Inventory Report and ERF project means that there was an anomaly between the herd emissions for project cattle excised from the national accounts (13 479 t CO2-e year–1) and the baseline herd emissions estimated for the ERF project (8 896 t CO2-e year–1) before P supplementation was implemented. Regionalising livestock model parameters in both ERF projects and the national accounts offers the attraction of being able to more easily and accurately reflect emissions savings from this type of emissions reduction project in Australia’s national GHG accounts.
Resumo:
The farm-gate value of extensive beef production from the northern Gulf region of Queensland, Australia, is ~$150 million annually. Poor profitability and declining equity are common issues for most beef businesses in the region. The beef industry relies primarily on native pasture systems and studies continue to report a decline in the condition and productivity of important land types in the region. Governments and Natural Resource Management groups are investing significant resources to restore landscape health and productivity. Fundamental community expectations also include broader environmental outcomes such as reducing beef industry greenhouse gas emissions. Whole-of-business analysis results are presented from 18 extensive beef businesses (producers) to highlight the complex social and economic drivers of management decisions that impact on the natural resource and environment. Business analysis activities also focussed on improving enterprise performance. Profitability, herd performance and greenhouse emission benchmarks are documented and discussed.
Resumo:
In previous chapters of this volume, various authors describe the development of herbaceous legumes for pastures on clay soils in Queensland until about the 1980s. Emphasis is on the collection and evaluation of the genus Desmanthus, given its relatively recent addition to agriculture and considerable potential for providing useful pasture legumes for clay soils, particularly in the seasonally dry areas of northern Australia. Other genera are also discussed, including early assessments of herbaceous legumes that were later developed for clay soils (Clitoria, Macroptilium and Stylosanthes). This chapter provides a summary of the development of herbaceous legumes for clay soils in Queensland from these earlier assessments until present. Beef cattle farming is the principal agricultural enterprise in seasonally dry areas of northern Australia, including large areas of clay soils in Queensland. Sown and naturally occurring grasses provide the key feed resource, and the inclusion of sown legumes can significantly improve live-weight gain and reproductive performance per unit area. Queensland has been the centre of development for legumes for clay soils in tropical and subtropical areas of Australia, mostly through assessing and developing plants held in the Australian Tropical Forages Genetic Resource Collection (ATFGRC) (now a component of the Australia Pastures Genebank (APG)). The systematic appraisal of genetic material for clay soils was a focus of well-resourced government research up to the early to mid-1990s, but declined thereafter as sown pasture research teams were dismantled and funding to maintain the ATFGRC declined. Cultivar development is now conducted by small government, private enterprise and university research teams that collaborate where possible. In recent studies the use of experienced researcher knowledge and old plant evaluation sites has been particularly valuable for identifying potentially useful material. Cultivars for long- and short-term pastures on clay soils have been developed to the level of commercial seed production for Desmanthus (five cultivars from four species with two cultivars (one composite) in current use), Clitoria ternatea (one cultivar), Macroptilium bracteatum (two) and Stylosanthes seabrana (two). Other potential cultivars of these species are currently in various stages of development. Each species has different production niches depending on climate, clay soil type and grazing strategy. Adoption of these cultivars is occurring but has variously been impeded by limited promotion, mismatch of seed supply and demand, and difficulty establishing legumes in pastures of some key grass species. Recent renewed investment by the Australian Beef Industry has seen revived government research into pasture legumes in Queensland and rejuvenation of the APG.
Resumo:
Beef businesses in northern Australia are facing increased pressure to be productive and profitable with challenges such as climate variability and poor financial performance over the past decade. Declining terms of trade, limited recent gains in on-farm productivity, low profit margins under current management systems and current climatic conditions will leave little capacity for businesses to absorb climate change-induced losses. In order to generate a whole-of-business focus towards management change, the Climate Clever Beef project in the Maranoa-Balonne region of Queensland trialled the use of business analysis with beef producers to improve financial literacy, provide a greater understanding of current business performance and initiate changes to current management practices. Demonstration properties were engaged and a systematic approach was used to assess current business performance, evaluate impacts of management changes on the business and to trial practices and promote successful outcomes to the wider industry. Focus was concentrated on improving financial literacy skills, understanding the business’ key performance indicators and modifying practices to improve both business productivity and profitability. To best achieve the desired outcomes, several extension models were employed: the ‘group facilitation/empowerment model’, the ‘individual consultant/mentor model’ and the ‘technology development model’. Providing producers with a whole-of-business approach and using business analysis in conjunction with on-farm trials and various extension methods proved to be a successful way to encourage producers in the region to adopt new practices into their business, in the areas of greatest impact. The areas targeted for development within businesses generally led to improvements in animal performance and grazing land management further improving the prospects for climate resilience.