47 resultados para Bayesian Modelling
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.
Resumo:
Large fruited spotted gum eucalypt Corymbia henryi occurs sympatrically with small fruited spotted gum Corymbia citriodora subspecies variegata over a large portion of its range on the east coast of Australia. The two taxa are interfertile, have overlapping flowering times and share a common set of insect and vertebrate pollinators. Previous genetic analysis of both taxa from two geographically remote sites suggested that the two were morphotypes rather than genetically distinct species. In this study we further explore this hypothesis of genic species by expanding sampling broadly through their sympatric locations and examine local-scale spatial genetic structure in stands that differ in species and age composition. Delineation of populations at five microsatellite loci, using an individual-based approach and Bayesian modelling, as well as clustering of individuals based on allele frequencies showed the two species to be molecularly homogeneous. Genetic structure aligned largely with geographic areas of origin, and followed an isolation-by-distance model, where proximal populations were generally less differentiated than more distant ones. At the stand level, spotted gums also generally showed little structure consistent with the high levels of gene flow inferred across the species range. Disturbances in the uniformity of structuring were detected, however, and attributed to localised events giving rise to even aged stands, probably due to regeneration from a few individuals following fire.
Resumo:
This paper describes the development of a model, based on Bayesian networks, to estimate the likelihood that sheep flocks are infested with lice at shearing and to assist farm managers or advisers to assess whether or not to apply a lousicide treatment. The risk of lice comes from three main sources: (i) lice may have been present at the previous shearing and not eradicated; (ii) lice may have been introduced with purchased sheep; and (iii) lice may have entered with strays. A Bayesian network is used to assess the probability of each of these events independently and combine them for an overall assessment. Rubbing is a common indicator of lice but there are other causes too. If rubbing has been observed, an additional Bayesian network is used to assess the probability that lice are the cause. The presence or absence of rubbing and its possible cause are combined with these networks to improve the overall risk assessment.
Resumo:
Motivated by the analysis of the Australian Grain Insect Resistance Database (AGIRD), we develop a Bayesian hurdle modelling approach to assess trends in strong resistance of stored grain insects to phosphine over time. The binary response variable from AGIRD indicating presence or absence of strong resistance is characterized by a majority of absence observations and the hurdle model is a two step approach that is useful when analyzing such a binary response dataset. The proposed hurdle model utilizes Bayesian classification trees to firstly identify covariates and covariate levels pertaining to possible presence or absence of strong resistance. Secondly, generalized additive models (GAMs) with spike and slab priors for variable selection are fitted to the subset of the dataset identified from the Bayesian classification tree indicating possibility of presence of strong resistance. From the GAM we assess trends, biosecurity issues and site specific variables influencing the presence of strong resistance using a variable selection approach. The proposed Bayesian hurdle model is compared to its frequentist counterpart, and also to a naive Bayesian approach which fits a GAM to the entire dataset. The Bayesian hurdle model has the benefit of providing a set of good trees for use in the first step and appears to provide enough flexibility to represent the influence of variables on strong resistance compared to the frequentist model, but also captures the subtle changes in the trend that are missed by the frequentist and naive Bayesian models. © 2014 Springer Science+Business Media New York.
Resumo:
Extensive resources are allocated to managing vertebrate pests, yet spatial understanding of pest threats, and how they respond to management, is limited at the regional scale where much decision-making is undertaken. We provide regional-scale spatial models and management guidance for European rabbits (Oryctolagus cuniculus) in a 260,791 km(2) region in Australia by determining habitat suitability, habitat susceptibility and the effects of the primary rabbit management options (barrier fence, shooting and baiting and warren ripping) or changing predation or disease control levels. A participatory modelling approach was used to develop a Bayesian network which captured the main drivers of suitability and spread, which in turn was linked spatially to develop high resolution risk maps. Policy-makers, rabbit managers and technical experts were responsible for defining the questions the model needed to address, and for subsequently developing and parameterising the model. Habitat suitability was determined by conditions required for warren-building and by above-ground requirements, such as food and harbour, and habitat susceptibility by the distance from current distributions, habitat suitability, and the costs of traversing habitats of different quality. At least one-third of the region had a high probability of being highly suitable (support high rabbit densities), with the model supported by validation. Habitat susceptibility was largely restricted by the current known rabbit distribution. Warren ripping was the most effective control option as warrens were considered essential for rabbit persistence. The anticipated increase in disease resistance was predicted to increase the probability of moderately suitable habitat becoming highly suitable, but not increase the at-risk area. We demonstrate that it is possible to build spatial models to guide regional-level management of vertebrate pests which use the best available knowledge and capture fine spatial-scale processes.
Resumo:
In recent years many sorghum producers in the more marginal (<600 mm annual rainfall) cropping areas of Qld and northern NSW have utilised skip row configurations in an attempt to improve yield reliability and reduce sorghum production risk. But will this work in the long run? What are the trade-offs between productivity and risk of crop failure? This paper describes a modelling and simulation approach to study the long-term effects of skip row configurations. Detailed measurements of light interception and water extraction from sorghum crops grown in solid, single and double skip row configurations were collected from three on-farm participatory research trials established in southern Qld and northern NSW. These measurements resulted in changes to the model that accounted for the elliptical water uptake pattern below the crop row and reduced total light interception associated with the leaf area reduction of the skip configuration. Following validation of the model, long-term simulation runs using historical weather data were used to determine the value of skip row sorghum production as a means of maintaining yield reliability in the dryland cropping regions of southern Qld and northern NSW.
Resumo:
By quantifying the effects of climatic variability in the sheep grazing lands of north western and western Queensland, the key biological rates of mortality and reproduction can be predicted for sheep. These rates are essential components of a decision support package which can prove a useful management tool for producers, especially if they can easily obtain the necessary predictors. When the sub-models of the GRAZPLAN ruminant biology process model were re-parameterised from Queensland data along with an empirical equation predicting the probability of ewes mating added, the process model predicted the probability of pregnancy well (86% variation explained). Predicting mortality from GRAZPLAN was less successful but an empirical equation based on relative condition of the animal (a measure based on liveweight), pregnancy status and age explained 78% of the variation in mortalities. A crucial predictor in these models was liveweight which is not often recorded on producer properties. Empirical models based on climatic and pasture conditions estimated from the pasture production model GRASP, predicted marking and mortality rates for Mitchell grass (Astrebla sp.) pastures (81% and 63% of the variation explained). These prediction equations were tested against independent data from producer properties and the model successfully validated for Mitchell grass communities.
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
Annual discard ogives were estimated using generalized additive models (GAMs) for four demersal fish species: whiting, haddock, megrim, and plaice. The analysis was based on data collected on board commercial vessels and at Irish fishing ports from 1995 to 2003. For all species the most important factors influencing annual discard ogives were fleet (combination of gear, fishing ground, and targeted species), mean length of the catch and year, and, for megrim, also minimum landing size. The length at which fish are discarded has increased since 2000 for haddock, whiting, and plaice. In contrast, discarded length has decreased for megrim, accompanying a reduction in minimum landing size in 2000.
Resumo:
Prediction of the initiation, appearance and emergence of leaves is critically important to the success of simulation models of crop canopy development and some aspects of crop ontogeny. Data on leaf number and crop ontogeny were collected on five cultivars of maize differing widely in maturity and genetic background grown under natural and extended photoperiods, and planted on seven sowing dates from October 1993 to March 1994 at Gatton, South-east Queensland. The same temperature coefficients were established for crop ontogeny before silking, and the rates of leaf initiation, leaf tip appearance and full leaf expansion, the base, optimum and maximum temperatures for each being 8, 34 and 40 degrees C. After silking, the base temperature for ontogeny was 0 degrees C, but the optimum and maximum temperatures remained unchanged. The rates of leaf initiation, appearance of leaf tips and full leaf expansion varied in a relatively narrow range across sowing times and photoperiod treatments, with average values of 0.040 leaves (degrees Cd)-1, 0.021 leaves (degrees Cd)-1, and 0.019 leaves (degrees Cd)-1, respectively. The relationships developed in this study provided satisfactory predictions of leaf number and crop ontogeny (tassel initiation to silking, emergence to silking and silking to physiological maturity) when assessed using independent data from Gatton (South eastern Queensland), Katherine and Douglas Daly (Northern Territory), Walkamin (North Queensland) and Kununurra (Western Australia).
Resumo:
Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.
Resumo:
Quantifying the potential spread and density of an invading organism enables decision-makers to determine the most appropriate response to incursions. We present two linked models that estimate the spread of Solenopsis invicta Buren (red imported fire ant) in Australia based on limited data gathered after its discovery in Brisbane in 2001. A stochastic cellular automaton determines spread within a location (100 km by 100 km) and this is coupled with a model that simulates human-mediated movement of S. invicta to new locations. In the absence of any control measures, the models predict that S. invicta could cover 763 000–4 066 000 km2 by the year 2035 and be found at 200 separate locations around Australia by 2017–2027, depending on the rate of spread. These estimated rates of expansion (assuming no control efforts were in place) are higher than those experienced in the USA in the 1940s during the early invasion phases in that country. Active control efforts and quarantine controls in the USA (including a concerted eradication attempt in the 1960s) may have slowed spread. Further, milder winters, the presence of the polygynous social form, increased trade and human mobility in Australia in 2000s compared with the USA in 1940s could contribute to faster range expansion.
Resumo:
Aflatoxins are highly carcinogenic mycotoxins produced by two fungi, Aspergillus flavus and A. parasiticus, under specific moisture and temperature conditions before harvest and/or during storage of a wide range of crops including maize. Modelling of interactions between host plant and environment during the season can enable quantification of preharvest aflatoxin risk and its potential management. A model was developed to quantify climatic risks of aflatoxin contamination in maize using principles previously used for peanuts. The model outputs an aflatoxin risk index in response to seasonal temperature and soil moisture during the maize grain filling period using the APSIM's maize module. The model performed well in simulating climatic risk of aflatoxin contamination in maize as indicated by a significant R2 (P ≤ 0.01) between aflatoxin risk index and the measured aflatoxin B1 in crop samples, which was 0.69 for a range of rainfed Australian locations and 0.62 when irrigated locations were also included in the analysis. The model was further applied to determine probabilities of exceeding a given aflatoxin risk in four non-irrigated maize growing locations of Queensland using 106 years of historical climatic data. Locations with both dry and hot climates had a much higher probability of higher aflatoxin risk compared with locations having either dry or hot conditions alone. Scenario analysis suggested that under non-irrigated conditions the risk of aflatoxin contamination could be minimised by adjusting sowing time or selecting an appropriate hybrid to better match the grain filling period to coincide with lower temperature and water stress conditions.
Resumo:
Two field experiments using maize (Pioneer 31H50) and three watering regimes [(i) irrigated for the whole crop cycle, until anthesis, (ii) not at all (experiment 1) and (iii) fully irrigated and rain grown for the whole crop cycle (experiment 2)] were conducted at Gatton, Australia, during the 2003-04 season. Data on crop ontogeny, leaf, sheath and internode lengths and leaf width, and senescence were collected at 1- to 3-day intervals. A glasshouse experiment during 2003 quantified the responses of leaf shape and leaf presentation to various levels of water stress. Data from experiment 1 were used to modify and parameterise an architectural model of maize (ADEL-Maize) to incorporate the impact of water stress on maize canopy characteristics. The modified model produced accurate fitted values for experiment 1 for final leaf area and plant height, but values during development for leaf area were lower than observed data. Crop duration was reasonably well fitted and differences between the fully irrigated and rain-grown crops were accurately predicted. Final representations of maize crop canopies were realistic. Possible explanations for low values of leaf area are provided. The model requires further development using data from the glasshouse study and before being validated using data from experiment 2 and other independent data. It will then be used to extend functionality in architectural models of maize. With further research and development, the model should be particularly useful in examining the response of maize production to water stress including improved prediction of total biomass and grain yield. This will facilitate improved simulation of plant growth and development processes allowing investigation of genotype by environment interactions under conditions of suboptimal water supply.