4 resultados para Bashkirtseva, Mariia Konstantinovna, 1858-1884

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drought during the pre-flowering stage can increase yield of peanut. There is limited information on genotypic variation for tolerance to and recovery from pre-flowering drought (PFD) and more importantly the physiological traits underlying genotypic variation. The objectives of this study were to determine the effects of moisture stress during the pre-flowering phase on pod yield and to understand some of the physiological responses underlying genotypic variation in response to and recovery from PFD. A glasshouse and field experiments were conducted at Khon Kaen University, Thailand. The glasshouse experiment was a randomized complete block design consisting of two watering regimes, i.e. fully-irrigated control and 1/3 available soil water from emergence to 40 days after emergence followed by adequate water supply, and 12 peanut genotypes. The field experiment was a split-plot design with two watering regimes as main-plots, and 12 peanut genotypes as sub-plots. Measurements of N-2 fixation, leaf area (LA) were made in both experiments. In addition, root growth was measured in the glasshouse experiment. Imposition of PFD followed by recovery resulted in an average increase in yield of 24 % (range from 10 % to 57 %) and 12 % (range from 2 % to 51 %) in the field and glasshouse experiments, respectively. Significant genotypic variation for N-2 fixation, LA and root growth was also observed after recovery. The study revealed that recovery growth following release of PFD had a stronger influence on final yield than tolerance to water deficits during the PFD. A combination of N-2 fixation, LA and root growth accounted for a major portion of the genotypic variation in yield (r = 0.68-0.93) suggesting that these traits could be used as selection criteria for identifying genotypes with rapid recovery from PFD. A combined analysis of glasshouse and field experiments showed that LA and N-2 fixation during the recovery had low genotype x environment interaction indicating potential for using these traits for selecting genotypes in peanut improvement programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to gain an understanding for drying sawn timber produced from fast-grown, well-managed Queensland hardwood plantations using accelerated drying methods. Due to limited resources, this was a preliminary study and further work will be required to optimize schedules for industrial implementation. Three conventional kiln trials, including two for 38-mm-thick, 19-year-old plantation Gympie messmate (Eucalyptus cloeziana F. Muell.) and one for 25mm thick, 15-year-old plantation red mahogany (Eucalyptus pellita F. Muell.), and two vacuum kiln drying trials, one each for 38- and 25mm thick Gympie messmate, were conducted. Measurements of final cross-sectional moisture content, moisture content gradient, residual drying stress, and internal and surface checking were used to quantify dried quality. Drying schedules were chosen based on either existing published schedules or, in the case of the vacuum drying trials, existing schedules for species with similar wood density and dying degrade properties, or manipulated schedules based on the results of trials conducted during this study. The findings indicate that both species can be dried using conventional drying techniques with acceptable grade quality in approximately 75 percent of the drying time that industry is currently achieving when drying native forest timber of the same species. The vacuum drying time was 60 percent less than conventional drying for 38-mm-thick, 19-year-old Gympie messmate, although drying quality needs improving. The findings have shown that through careful schedule manipulation and adjustment, the grade quality can be optimized to suit the desired expectation. Additional research is required to further optimize the schedules to ensure acceptable grade qualities can be reliably achieved across all drying criteria and exploit opportunities to reduce drying times further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Effective decisions for managing invasive species depend on feedback about the progress of eradication efforts. Panetta & Lawes. developed the eradograph, an intuitive graphical tool that summarizes the temporal trajectories of delimitation and extirpation to support decision-making. We correct and extend the tool, which was affected by incompatibilities in the units used to measure these features that made the axes impossible to interpret biologically. Location: Victoria, New South Wales and Queensland, Australia. Methods: Panetta and Lawes' approach represented delimitation with estimates of the changes in the area known to be infested and extirpation with changes in the mean time since the last detection. We retain the original structure but propose different metrics that improve biological interpretability. We illustrate the methods with a hypothetical example and real examples of invasion and treatment of branched broomrape (Orobanche ramosa L.) and the guava rust complex (Puccinia psidii (Winter 1884)) in Australia. Results: These examples illustrate the potential of the tool to guide decisions about the effectiveness of search and control activities. Main conclusions: The eradograph is a graphical data summary tool that provides insight into the progress of eradication. Our correction and extension of the tool make it easier to interpret and provide managers with better decision support. © 2013 John Wiley & Sons Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus name Limnocharis is derived from the Greek limno (meaning marsh or pond) and charis (meaning grace) (Haynes and Holm-Nielson 1992) and flava is Latin for yellow. The genus is generally accepted to have two species, Limnocharis flava (Linneaus) Buchenau 1868 and L. laforestii (Duchass. ex Griseb) 1858. L. flava was first named Alisma flava by Linneaus in 1753 (Haynes and Holm-Nielsen 1986). Since then, other synonyms have included Damasonium flavum Mill. 1772, Limnocharis emarginata Humb. and Bonpl. 1808, Limnocharis plumieri Rich. 1815, Limnocharis laforestii Duchas. ex Griseb (1858) and Limnocharis mattogrossensis O. Ktze. (1893) (Woodson and Schery 1943).