2 resultados para Bait Harvesting

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perimeter-baiting of non-crop vegetation using toxic protein baits was developed overseas as a technique for control of melon fly, Zeugodacus (Zeugodacus) cucurbitae (Coquillett) (formerly Bactrocera (Zeugodacus) cucurbitae), and evidence suggests that this technique may also be effective in Australia for control of local fruit fly species in vegetable crops. Using field cage trials and laboratory reared flies, primary data were generated to support this approach by testing fruit flies' feeding response to protein when applied to eight plant species (forage sorghum, grain sorghum, sweet corn, sugarcane, eggplant, cassava, lilly pilly and orange jessamine) and applied at three heights (1, 1.5 and 2 m). When compared across the plants, Queensland fruit fly, Bactrocera tryoni (Froggatt), most commonly fed on protein bait applied to sugarcane and cassava, whereas more cucumber fly, Zeugodacus (Austrodacus) cucumis (French) (formerly Bactrocera (Austrodacus) cucumis), fed on bait applied to sweet corn and forage sorghum. When protein bait was applied at different heights, B. tryoni responded most to bait placed in the upper part of the plants (2 m), whereas Z. cucumis preferred bait placed lower on the plants (1 and 1.5 m). These results have implications for optimal placement of protein bait for best practice control of fruit flies in vegetable crops and suggest that the two species exhibit different foraging behaviours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The harvest and trade of corals and other benthic organisms from the world’s shallow tropical reefs is a lucrative industry that can have positive socioeconomic benefits for communities while supplying the increasing demand specimens for aquaria and curios. For most countries, this trade has historically been almost entirely unregulated. More recently, in response to concerns about the rapid decline of some reefs in the face of anthropogenic and natural pressures, as well as indications of depletions and even localized extinctions of some species caused by harvesting, there have been attempts to improve the sustainability of the industry. Both developing and developed countries face different impediments to this reform, the most pressing and common of which is the lack of reliable data on world trade through CITES. Thereafter, differences in the processes through which reform can be implemented are based principally on the length of the supply chain from collection to export, the degree of industry stewardship, and resourcing. The coral collection fishery in Queensland, Australia, provides an example where continual improvements in reporting and risk assessments and adopting a comanagement approach are delivering better adaptive management of the resource, although the on-ground sustainability benefits of this approach are still to be tested. A simpler approach to sustainable use of coral is to favor the replacement of wild harvested specimens with those bred or grown entirely in an aquaculture facility (as opposed to merely collected and then grown out in culture). Yet there are major impediments to this change, including the dependence of many public aquaria on the same sources as the hobbyist community, difficulties of culturing some species in captivity, and infrastructure costs. Nevertheless, this approach will likely play an important part in reef conservation efforts in the future.