23 resultados para Baie de Kung Krabaen
em eResearch Archive - Queensland Department of Agriculture
Resumo:
An outbreak of equine influenza (EI) caused by influenza A H3N8 subtype virus occurred in the Australian states of Queensland and New South Wales in August 2007. Infection in the Australian horse population was associated with the introduction of infection by horses from overseas. The first case of EI in Queensland was detected on 25 August 2007 at an equestrian sporting event. Infection subsequently spread locally and to other clusters through horse movements prior to the implementation of an official standstill. There were five main clusters of infected properties during this outbreak and several outliers, which were investigated to find the potential mechanism of disease spread. To contain the outbreak, Queensland was divided into infection status zones, with different movement controls applied to each zone. Vaccination was implemented strategically in infected areas and within horse subpopulations. Control and eventual eradication of EI from Queensland was achieved through a combination of quarantine, biosecurity measures, movement control, rapid diagnostic testing and vaccination.
Resumo:
The highly lethal Hendra and Nipah viruses have been described for little more than a decade, yet within that time have been aetiologically associated with major livestock and human health impacts, albeit on a limited scale. Do these emerging pathogens pose a broader threat, or are they inconsequential 'viral chatter'. Given their lethality, and the evident multi-generational human-to-human transmission associated with Nipah virus in Bangladesh, it seems prudent to apply the precautionary principle. While much is known of their clinical, pathogenic and epidemiologic features in livestock species and humans, a number of fundamental questions regarding the relationship between the viruses, their natural fruit-bat host and the environment remain unanswered. In this paper, we pose and probe these questions in context, and offer perspectives based primarily on our experience with Hendra virus in Australia, augmented with Nipah virus parallels.
Resumo:
In multi-species fisheries managed under ITQs, the existence of joint production may lead to complex catch-quota balancing issues. Previous modelling and experimental research suggest that, in such fisheries, some fishers may benefit from the ability to trade packages of fishing quotas, rather than fulfil their quota needs by simultaneously bidding on separate single-species quota markets. This note presents evidence of naturally occurring package trades in a real fishery. Based on this evidence, we suggest that further empirical and modelling research is required on the potential and limitations of package quota trading in mixed fisheries managed with ITQs. © 2014.
Resumo:
Hendra virus is a highly pathogenic novel paramyxovirus causing sporadic fatal infection in horses and humans in Australia. Species of fruit-bats (genus Pteropus), commonly known as flying-foxes, are the natural host of the virus. We undertook a survey of horse owners in the states of Queensland and New South Wales, Australia to assess the level of adoption of recommended risk management strategies and to identify impediments to adoption. Survey questionnaires were completed by 1431 respondents from the target states, and from a spectrum of industry sectors. Hendra virus knowledge varied with sector, but was generally limited, with only 13% of respondents rating their level of knowledge as high or very high. The majority of respondents (63%) had seen their state’s Hendra virus information for horse owners, and a similar proportion found the information useful. Fifty-six percent of respondents thought it moderately, very or extremely likely that a Hendra virus case could occur in their area, yet only 37% said they would consider Hendra virus if their horse was sick. Only 13% of respondents stabled their horses overnight, although another 24% said it would be easy or very easy to do so, but hadn’t done so. Only 13% and 15% of respondents respectively had horse feed bins and water points under solid cover. Responses varied significantly with state, likely reflecting different Hendra virus history. The survey identified inconsistent awareness and/or adoption of available knowledge, confusion in relation to Hendra virus risk perception, with both over-and under-estimation of true risk, and lag in the uptake of recommended risk minimisation strategies, even when these were readily implementable. However, we also identified frustration and potential alienation by horse owners who found the recommended strategies impractical, onerous and prohibitively expensive. The insights gained from this survey have broader application to other complex risk-management scenarios.
Resumo:
Zoonoses from wildlife threaten global public health. Hendra virus is one of several zoonotic viral diseases that have recently emerged from Pteropus species fruit-bats (flying-foxes). Most hypotheses regarding persistence of Hendra virus within flying-fox populations emphasize horizontal transmission within local populations (colonies) via urine and other secretions, and transmission among colonies via migration. As an alternative hypothesis, we explore the role of recrudescence in persistence of Hendra virus in flying-fox populations via computer simulation using a model that integrates published information on the ecology of flying-foxes, and the ecology and epidemiology of Hendra virus. Simulated infection patterns agree with infection patterns observed in the field and suggest that Hendra virus could be maintained in an isolated flying-fox population indefinitely via periodic recrudescence in a manner indistinguishable from maintenance via periodic immigration of infected individuals. Further, post-recrudescence pulses of infectious flying-foxes provide a plausible basis for the observed seasonal clustering of equine cases. Correct understanding of the infection dynamics of Hendra virus in flying-foxes is fundamental to effectively managing risk of infection in horses and humans. Given the lack of clear empirical evidence on how the virus is maintained within populations, the role of recrudescence merits increased attention.
Resumo:
Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors.
Resumo:
An economic survey of the commercial operators currently active in the Queensland Coral Reef Fin-Fish Fishery has been carried out, as part of a research project aimed at evaluating alternative management options for this fishery. This paper presents the background analysis used as a basis to develop the sampling design for this survey. The background analysis focuses on activity patterns of the fleet based on effort and catch information, as well as patterns of quota ownership. Based on this information, a fishing business profile describing the micro-economic structure of fishing operations is developed. This profile, in conjunction with the qualitative information gained in undertaking the economic surveys, allows preliminary understanding of the key drivers of profitability in the CRFFF, and possible impacts of external factors on fishing operations.
Resumo:
In May 2013, the first cases of Australian bat lyssavirus infections in domestic animals were identified in Australia. Two horses (filly-H1 and gelding-H2) were infected with the Yellow-bellied sheathtail bat (YBST) variant of Australian bat lyssavirus (ABLV). The horses presented with neurological signs, pyrexia and progressing ataxia. Intra-cytoplasmic inclusion bodies (Negri bodies) were detected in some Purkinje neurons in haematoxylin and eosin (H&E) stained sections from the brain of one of the two infected horses (H2) by histological examination. A morphological diagnosis of sub-acute moderate non-suppurative, predominantly angiocentric, meningo-encephalomyelitis of viral aetiology was made. The presumptive diagnosis of ABLV infection was confirmed by the positive testing of the affected brain tissue from (H2) in a range of laboratory tests including fluorescent antibody test (FAT) and real-time PCR targeting the nucleocapsid (N) gene. Retrospective testing of the oral swab from (H1) in the real-time PCR also returned a positive result. The FAT and immunohistochemistry (IHC) revealed an abundance of ABLV antigen throughout the examined brain sections. ABLV was isolated from the brain (H2) and oral swab/saliva (H1) in the neuroblastoma cell line (MNA). Alignment of the genome sequence revealed a 97.7% identity with the YBST ABLV strain.
Resumo:
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.
Resumo:
Hendra virus (HeV), a highly pathogenic zoonotic paramyxovirus recently emerged from bats, is a major concern to the horse industry in Australia. Previous research has shown that higher temperatures led to lower virus survival rates in the laboratory. We develop a model of survival of HeV in the environment as influenced by temperature. We used 20 years of daily temperature at six locations spanning the geographic range of reported HeV incidents to simulate the temporal and spatial impacts of temperature on HeV survival. At any location, simulated virus survival was greater in winter than in summer, and in any month of the year, survival was higher in higher latitudes. At any location, year-to-year variation in virus survival 24 h post-excretion was substantial and was as large as the difference between locations. Survival was higher in microhabitats with lower than ambient temperature, and when environmental exposure was shorter. The within-year pattern of virus survival mirrored the cumulative within-year occurrence of reported HeV cases, although there were no overall differences in survival in HeV case years and non-case years. The model examines the effect of temperature in isolation; actual virus survivability will reflect the effect of additional environmental factors
Resumo:
The urban presence of flying-foxes (pteropid bats) in eastern Australia has increased in the last 20 years, putatively reflecting broader landscape change. The influx of large numbers often precipitates community angst, typically stemming from concerns about loss of social amenity, economic loss or negative health impacts from recently emerged bat-mediated zoonotic diseases such as Hendra virus and Australian bat lyssavirus. Local authorities and state wildlife authorities are increasingly asked to approve the dispersal or modification of flying-fox roosts to address expressed concerns, yet the scale of this concern within the community, and the veracity of the basis for concern are often unclear. We conducted an on-line survey to capture community attitudes and opinions on flying-foxes in the urban environment to inform management policy and decision-making. Analysis focused on awareness, concerns, and management options, and primarily compared responses from communities where flying-fox management was and was not topical at the time of the survey. While a majority of respondents indicated a moderate to high level of knowledge of both flying-foxes and Hendra virus, a substantial minority mistakenly believed that flying-foxes pose a direct infection risk to humans, suggesting miscommunication or misinformation, and the need for additional risk communication strategies. Secondly, a minority of community members indicated they were directly impacted by urban roosts, most plausibly those living in close proximity to the roost, suggesting that targeted management options are warranted. Thirdly, neither dispersal nor culling was seen as an appropriate management strategy by the majority of respondents, including those from postcodes where flying-fox management was topical. These findings usefully inform community debate and policy development and demonstrate the value of social analysis in defining the issues and options in this complex human - wildlife interaction. The mobile nature of flying-foxes underlines the need for a management strategy at a regional or larger scale, and independent of state borders.
Resumo:
Bats of the genus Pteropus (flying-foxes) are the natural host of Hendra virus (HeV) which periodically causes fatal disease in horses and humans in Australia. The increased urban presence of flying-foxes often provokes negative community sentiments because of reduced social amenity and concerns of HeV exposure risk, and has resulted in calls for the dispersal of urban flying-fox roosts. However, it has been hypothesised that disturbance of urban roosts may result in a stress-mediated increase in HeV infection in flying-foxes, and an increased spillover risk. We sought to examine the impact of roost modification and dispersal on HeV infection dynamics and cortisol concentration dynamics in flying-foxes. The data were analysed in generalised linear mixed models using restricted maximum likelihood (REML). The difference in mean HeV prevalence in samples collected before (4.9%), during (4.7%) and after (3.4%) roost disturbance was small and non-significant (P = 0.440). Similarly, the difference in mean urine specific gravity-corrected urinary cortisol concentrations was small and non-significant (before = 22.71 ng/mL, during = 27.17, after = 18.39) (P= 0.550). We did find an underlying association between cortisol concentration and season, and cortisol concentration and region, suggesting that other (plausibly biological or environmental) variables play a role in cortisol concentration dynamics. The effect of roost disturbance on cortisol concentration approached statistical significance for region, suggesting that the relationship is not fixed, and plausibly reflecting the nature and timing of disturbance. We also found a small positive statistical association between HeV excretion status and urinary cortisol concentration. Finally, we found that the level of flying-fox distress associated with roost disturbance reflected the nature and timing of the activity, highlighting the need for a ‘best practice’ approach to dispersal or roost modification activities. The findings usefully inform public discussion and policy development in relation to Hendra virus and flying-fox management.
Resumo:
Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.