1 resultado para Bacteria, production as carbon

em eResearch Archive - Queensland Department of Agriculture


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optimal matching of species to sites is required for a sustainable hardwood plantation industry in the subtropics. This paper reports the performance and adaptation of 60 taxa (species, provenances and hybrids) across two rainfall zones and a range of soil types in southern Queensland. Specifically, performance of taxa is compared across five replicated taxon–site matching trials at age 6 y. Three trials are in a 1000-mm y–1 rainfall zone of the Wide Bay region near Miriam Vale and two in a drier (about 750 mm y–1) rainfall zone near Kingaroy in the South Burnett region. In the higher-rainfall zone, the taxa with the fastest growth in the three trials at age 6 y were Corymbia citriodora subsp. variegata Woondum provenance, which ranked 1st, 6th and 5th respectively; E. longirostrata Coominglah provenance, ranked 3rd, 2nd and 3rd; and two sources of E. grandis, Copperlode provenance (ranked 4th and 1st) and SAPPI seed orchard (ranked 6th and 4th), which were planted in only two of the three trials. Similarly, in the lower-rainfall zone, E. grandis and its hybrids appear promising from the 6-y growth data., This excellent early growth, however, has not continued in either rainfall zone, with these taxa, 8 y after planting, now showing signs of stress and mortality. Based on trial results in these two rainfall zones, the taxon that appears the most promising for sustainable plantation development with high average annual volume index values and low incidence of borer attack is Corymbia citriodora subsp. variegata (6.7 m³ ha–1). Eucalyptus grandis and E. longirostrata both have better average annual volume indexes (8.2 m³ ha–1 and 7.4 m³ ha–1 respectively) but are very susceptible to borer attack. The current and long-term productivity and sustainability of plantation forestry in these rainfall zones is discussed. Further, the implications of predicted climate change (particularly reduced rainfall) for growing trees for fibre production and carbon sequestration are explored.