5 resultados para Bacillus subtilis
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The effect of dietary crude protein (CP) and additives on odour flux from broiler litter was investigated using 180 day-old Ross 308 male chicks randomly allocated to five dietary treatments with three replications of 12 birds each. A 5×3 factorial arrangement of treatments was employed. Factors were: diet (low CP, high CP, high CP+antibiotic, high CP+probiotic, high CP+saponin) and age (15, 29, 35 days). Low CP (LCP) and high CP (HCP) diets differed in CP levels by 4.5-5%. The low CP diets were supplemented with L-valine, L-isoleucine, L-arginine, L-lysine, D,L-methionine and L-threonine. The antibiotic used was Zn Bacitracin, the probiotic was a blend of three Bacillus subtilis strains and the saponin came from a blend of Yucca and Quillaja. Odorants were measured from litter headspace using a flux hood and selective ion flow tube mass spectrometry (SIFT-MS). Results were log tranformed and analysed by two-way ANOVA with repeated measures using JMP statistical software v.8, and means were separated by Tukey's HSD test at P<0.05.The results showed that LCP group produced lower flux of dimethyl amine, trimethyl amine, H2S, NH3 and phenol in litter compared to HCP group (P<0.05). Similarly, HCP+probiotic group produced lower flux of H2S (P<0.05) and HCP+saponin group produced lower flux of trimethylamine and phenol in litter compared to HCP group (P<0.05). The dietary treatments tended (P=0.065) to have higher flux of methanethiol in HCP group compared to others. There was a diet x age interaction for litter flux of diacetyl, acetoin, 3-methyl-1-butanol, 3-methylbutanal, ethanethiol, propionic acid and hexane (P<0.05). Concentrations of diacetyl, acetoin, propionic acid and hexane in litter were higher from LCP group compared to all other treatments on d 35 (P<0.05) but not on days 15 and 29. Thus, the low CP diet, Bacillus subtilis based probiotic and Yucca/Quillaja based saponin were effective in reducing the emissions of some key odorants from broiler litter.
Resumo:
The effect of different fungicide programs on grey mould (caused by Botrytis cinerea) and stem-end rot (caused by Gnomoniopsis fructicola) affecting strawberry plants (Fragaria ×ananassa cv. Festival) was studied in subtropical Australia over three years. The treatments involved a range of different synthetic multi- and single-site fungicides with different modes of action, a plant-defence promoter, plant extracts (lupin and rhubarb), organic acids, fatty acids, a salt, two strains of Bacillus subtilis, and single strains of B. amyloliquefaciens, Streptomyces lydicus and Trichoderma harzianum. Standard programs based on captan and thiram alternated, and applied with iprodione, fenhexamid, cyprodinil + fludioxonil, and penthiopyrad resulted in 3–4 % of unmarketable fruit compared with 25–38 % in the water-treated controls. There was no difference in the level of disease suppression when five or thirteen applications of single-site fungicides were rotated with the two multi-site fungicides. The incidence of unmarketable fruit was similar to the standard programs using isopyrazam (in 1 year out of 2), or penthiopyrad, fluazinam, chlorothalonil or thiram alone (in 1 year out of 1). The other fungicide programs were generally less effective. There were strong relationships between marketable yield and the incidence of unmarketable fruit over the three years (R2s = 0.82–0.93). A strategy based on thiram and captan applied alternately, with reduced applications of single-site fungicides is recommended and should reduce the chance of resistance to single-site fungicides becoming widespread in populations of the grey mould fungus. Although the program based on thiram alone had a similar incidence of unmarketable fruit as the standard program, repeated weekly applications of thiram are not recommended as they may cause unacceptable residues in the fruit. There were issues with some of the other fungicides due to phytotoxicity, residues, or difficulties with registering new fungicides that are in the same chemical group as currently registered products.
Resumo:
The effect of dietary crude protein (CP) and additives on odor flux from meat chicken litter was investigated using 180 day-old Ross 308 male chicks randomly allocated to five dietary treatments with three replicates of 12 birds each. A 5 × 3 factorial arrangement of treatments was employed. Factors were: diet (low CP, high CP, high CP+antibiotic, high CP+probiotic, high CP+saponin) and age (15, 29, 35 days). The antibiotic used was Zn bacitracin, the probiotic was a blend of three Bacillus subtilis strains and the saponin came from a blend of Yucca and Quillaja. Odorants were collected from litter headspace with a flux hood and measured using selective ion flow tube mass spectrometry (SIFT-MS). Litter moisture, water activity (Aw), and litter headspace odorant concentrations were correlated. The results showed that low CP group produced lower flux of dimethyl amine, trimethyl amine, H2S, NH3, and phenol in litter compared to high CP group (P < 0.05). Similarly, high CP+probiotic group produced lower flux of H2S (P < 0.05) and high CP+saponin group produced lower flux of trimethylamine and phenol in litter compared to high CP group (P < 0.05). The dietary treatments tended (P = 0.065) to have higher flux of methanethiol in high CP group compared to others. There was a diet × age interaction for litter flux of diacetyl, 3-hydroxy-2-butanone (acetoin), 3-methyl-1-butanol, 3-methylbutanal, ethanethiol, propionic acid, and hexane (P < 0.05). Concentrations of diacetyl, acetoin, propionic acid, and hexane in litter were higher from low CP group compared to all other treatments on d 35 (P < 0.05) but not on d 15 and 29. A high litter moisture increased water activity (P < 0.01) and favored the emissions of methyl mercaptan, hydrogen sulfide, dimethyl sulfide, ammonia, trimethyl amine, phenol, indole, and 3-methylindole over others. Thus, the low CP diet, Bacillus subtilis based probiotic and the blend of Yucca/Quillaja saponin were effective in reducing the emissions of some key odorants from meat chicken litter.
Resumo:
The potential application of the spore-forming probiotic Bacillus amyloliquefaciens strain H57 (H57) as a novel probiotic for ruminants was evaluated in reproducing ewes. Performance responses were determined by delivering H57 in a pelleted diet based mainly on palm kernel meal (PKM) and sorghum grain. PKM is an agro-industrial by-product with a reputation for poor palatability and the availability of the starch in sorghum grain can be limited in ruminants. The hypothesis was that H57 improves the feeding value of a relatively low quality concentrate diet. Twenty-four first-parity white Dorper ewes were fed PKM-based pellets manufactured with or without H57 (109 cfu/kg pellet) in late pregnancy. During this phase of late pregnancy, the H57 ewes ate 17% more dry matter (1019 vs 874 g/day, P = 0.03), gained more weight (194 vs 30 g/day, P = 0.008) and retained more nitrogen (6.13 vs 3.34 g/day, P = 0.01), but produced lambs with a similar birthweight (4.1 vs 4.2 kg, P = 0.73). Rumen fluid collected from H57 ewes in late pregnancy had higher pH (7.1 vs 6.8, P = 0.07), acetate : propionate ratio (3.4 vs 2.7, P = 0.04), lower ammonia (69 vs 147 mmol/L, P = 0.001) and total volatile fatty acid concentrations (40 vs 61 mg/L, P = 0.02). The digestibility of dry matter, organic matter and fibre were similar between the two groups. The lambs of the H57 ewes grew faster than those of the Control ewes for the first 21 days of lactation (349 vs 272 g/day, P = 0.03), but not thereafter. H57 can improve feed intake and maternal liveweight gain in late pregnancy of first-parity ewes fed a diet based on PKM.
Resumo:
Bacillus amyloliquefaciens H57 is a bacterium isolated from lucerne for its ability to prevent feed spoilage. Further interest developed when ruminants fed with H57-inoculated hay showed increased weight gain and nitrogen retention relative to controls, suggesting a probiotic effect. The near complete genome of H57 is ~3.96 Mb comprising 16 contigs. Within the genome there are 3,836 protein coding genes, an estimated sixteen rRNA genes and 69 tRNA genes. H57 has the potential to synthesise four different lipopeptides and four polyketide compounds, which are known antimicrobials. This antimicrobial capacity may facilitate the observed probiotic effect.