13 resultados para BRANCHED POLYETHYLENES

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because weed eradication programs commonly take 10 or more years to complete, there is a need to evaluate progress toward the eradication objective. We present a simple model, based on information that is readily obtainable, that assesses conformity to the delimitation and extirpation criteria for eradication. It is applied to the program currently targeting the annual parasitic weed, branched broomrape, in South Australia. The model consists of delimitation and extirpation (E) measures plotted against each other to form an 'eradograph.' Deviations from the 'ideal' eradograph plot can inform tactical responses, e.g., increases in survey and/or control effort. Infestations progress from the active phase to the monitoring phase when no plants have been detected for at least 12 mo. They revert to the active phase upon further detection of plants. We summarize this process for the invasion as a whole in a state-and-transition model. Using this model we demonstrate that the invasion is unlikely to be delimited unless the amount of newly detected infested area decreases, on average, by at least 50% per annum. As a result of control activities implemented, on average approximately 70% (range, 44 to 86%) of active infestations progressed to the monitoring phase in the year following their detection. Simulations suggest that increasing this rate of transition will not increase E to a significant extent. The rate of reversion of infestations from the monitoring phase to the active phase decreased logarithmically with time since last detection, but it is likely that lower rates of reversion would accelerate the trend toward extirpation. Program performance with respect to the delimitation criterion has been variable; performance with respect to the extirpation criterion would be improved considerably by the development and application of cost-effective methods for eliminating branched broomrape soil seed populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rumen degradability parameters of the diet selected by two to four oesophageal-fistulated Brahman steers grazing a range of tropical pastures were determined by incubation of extrusa in nylon bags suspended in the rumen of rumen-fistulated (RF) Brahman steers. The effective protein degradability (Edg) was determined by measuring the rate of disappearance of neutral detergent insoluble nitrogen (NDIN) less acid detergent insoluble nitrogen (ADIN) in the incubated extrusa. Six to eight RF steers also grazed each of the pastures along with the oesophageal-fistulated steers, to allow determination of key rumen parameters and rumen particulate matter fractional outflow rates (FOR). The seven pastures studied included: native tropical grass (C4) pasture (major species Heteropogon contortus and Bothriochloa bladhii), studied in the early wet (NPEW), the wet/dry transition (NPT) and the dry (NPD) seasons; introduced tropical grass (C4) pasture (Bothriochloa insculpta), studied in the mid wet season (BB); the introduced tropical legumes (C3), Lablab purpureus (LL) and Clitoria ternatea (BP); and the temperate grass (C3) pasture, ryegrass (Lolium multiflorum, RG). Using the measured particle FOR values in calculations, the Edg estimates were very high for both C4 and C3 species: 0.82–0.91 and 0.95–0.98 g/g crude protein (CP), respectively. Substitution of an assumed FOR (kp = 0.02/h) for the measured values for each pasture type did not markedly affect estimates of Edg. However, C4 tropical grasses had much lower effective rumen degradable protein (ERDP) fractions (23–66 g/kg DM) than the C3 pasture species RG and LL (356 and 243 g/kg DM, respectively). This was associated with a lower potential degradability and degradation rate of organic matter (OM) in sacco, lower in vitro organic matter digestibility (IVOMD) and CP concentrations in the extrusa, and lower ammonia-N and branched-chain fatty acid concentrations in rumen fluid for the tropical grasses. As tropical grass pastures senesced, there was a decline in Edg, the ERDP and rumen undegradable protein (UDP) fractions, the potential degradability and degradation rate of OM and the IVOMD. These results provide useful data for estimating protein supply to cattle grazing tropical pastures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Weed eradication efforts often must be sustained for long periods owing to the existence of persistent seed banks, among other factors. Decision makers need to consider both the amount of investment required and the period over which investment must be maintained when determining whether to commit to (or continue) an eradication programme. However, a basis for estimating eradication programme duration based on simple data has been lacking. Here, we present a stochastic dynamic model that can provide such estimates. 2. The model is based upon the rates of progression of infestations from the active to the monitoring state (i.e. no plants detected for at least 12 months), rates of reversion of infestations from monitoring to the active state and the frequency distribution of time since last detection for all infestations. Isoquants that illustrate the combinations of progression and reversion parameters corresponding to eradication within different time frames are generated. 3. The model is applied to ongoing eradication programmes targeting branched broomrape Orobanche ramosa and chromolaena Chromolaena odorata. The minimum periods in which eradication could potentially be achieved were 22 and 23 years, respectively. On the basis of programme performance until 2008, however, eradication is predicted to take considerably longer for both species (on average, 62 and 248 years, respectively). Performance of the branched broomrape programme could be best improved through reducing rates of reversion to the active state; for chromolaena, boosting rates of progression to the monitoring state is more important. 4. Synthesis and applications. Our model for estimating weed eradication programme duration, which captures critical transitions between a limited number of states, is readily applicable to any weed.Aparticular strength of the method lies in its minimal data requirements. These comprise estimates of maximum seed persistence and infested area, plus consistent annual records of the detection (or otherwise) of the weed in each infestation. This work provides a framework for identifying where improvements in management are needed and a basis for testing the effectiveness of alternative tactics. If adopted, our approach should help improve decision making with regard to eradication as a management strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lateral line system allows elasmobranchs to detect hydrodynamic movements in their close surroundings. We examined the distribution of pit organs and lateral line canals in 4 species of sawfish (Anoxypristis cuspidata, Pristis microdon, P. clavata and P. zijsron). Pit organs could only be located in A. cuspidata, which possesses elongated pits that are lined by dermal denticles. In all 4 pristid species, the lateral line canals are well developed and were separated into regions of pored and non-pored canals. In all species the tubules that extend from pored canals form extensive networks. In A. cuspidata, P. microdon and P. clavata, the lateral line canals on both the dorsal and ventral surfaces of the rostrum possess extensively branched and pored tubules. Based on this morphological observation, we hypothesized that these 3 species do not use their rostrum to search in the substrate for prey as previously assumed. Other batoids that possess lateral line canals adapted to perceive stimuli produced by infaunal prey possess non-pored lateral line canals, which also prevent the intrusion of substrate particles. However, this hypothesis remains to be tested behaviourally in pristids. Lateral line canals located between the mouth and the nostrils are non-pored in all 4 species of sawfish. Thus this region is hypothesized to perceive stimuli caused by direct contact with prey before ingestion. Lateral line canals that contain neuromasts are longest in P. microdon, but canals containing neuromasts along the rostrum are longest in A. cuspidata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parthenium weed (Parthenium hysterophorus L.) is an erect, branched, annual plant of the family Asteraceae. It is native to the tropical Americas, while now widely distributed throughout Africa, Asia, Oceania, and Australasia. Due to its allelopathic and toxic characteristics, parthenium weed has been considered to be a weed of global significance. These effects occur across agriculture (crops and pastures), within natural ecosystems, and has impacts upon health (human and animals). Although integrated weed management (IWM) for parthenium weed has had some success, due to its tolerance and good adaptability to temperature, precipitation, and CO2, this weed has been predicted to become more vigorous under a changing climate resulting in an altered canopy architecture. From the viewpoint of IWM, the altered canopy architecture may be associated with not only improved competitive ability and replacement but also may alter the effectiveness of biocontrol agents and other management strategies. This paper reports on a preliminary study on parthenium weed canopy architecture at three temperature regimes (day/night 22/15 °C, 27/20 °C, and 32/25 °C in thermal time 12/12 hours) and establishes a threedimensional (3D) canopy model using Lindenmayer-systems (L-systems). This experiment was conducted in a series of controlled environment rooms with parthenium weed plants being grown in a heavy clay soil. A sonic digitizer system was used to record the morphology, topology, and geometry of the plants for model construction. The main findings include the determination of the phyllochron which enables the prediction of parthenium weed growth under different temperature regimes and that increased temperature enhances growth and enlarges the plants canopy size and structure. The developed 3D canopy model provides a tool to simulate and predict the weed growth in response to temperature, and can be adjusted for studies of other climatic variables such as precipitation and CO2. Further studies are planned to investigate the effects of other climatic variables, and the predicted changes in the pathogenic biocontrol agent effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two prerequisites for realistically embarking upon an eradication programme are that cost-benefit analysis favours this strategy over other management options and that sufficient resources are available to carry the programme through to completion. These are not independent criteria, but it is our view that too little attention has been paid to estimating the investment required to complete weed eradication programmes. We deal with this problem by using a two-pronged approach: 1) developing a stochastic dynamic model that provides an estimation of programme duration; and 2) estimating the inputs required to delimit a weed incursion and to prevent weed reproduction over a sufficiently long period to allow extirpation of all infestations. The model is built upon relationships that capture the time-related detection of new infested areas, rates of progression of infestations from the active to the monitoring stage, rates of reversion of infestations from the monitoring to active stage, and the frequency distribution of time since last detection for all infestations. This approach is applied to the branched broomrape (Orobanche ramosa) eradication programme currently underway in South Australia. This programme commenced in 1999 and currently 7450 ha are known to be infested with the weed. To date none of the infestations have been eradicated. Given recent (2008) levels of investment and current eradication methods, model predictions are that it would take, on average, an additional 73 years to eradicate this weed at an average additional cost (NPV) of $AU67.9m. When the model was run for circumstances in 2003 and 2006, the average programme duration and total cost (NPV) were predicted to be 159 and 94 years, and $AU91.3m and $AU72.3m, respectively. The reduction in estimated programme length and cost may represent progress towards the eradication objective, although eradication of this species still remains a long term prospect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Effective decisions for managing invasive species depend on feedback about the progress of eradication efforts. Panetta & Lawes. developed the eradograph, an intuitive graphical tool that summarizes the temporal trajectories of delimitation and extirpation to support decision-making. We correct and extend the tool, which was affected by incompatibilities in the units used to measure these features that made the axes impossible to interpret biologically. Location: Victoria, New South Wales and Queensland, Australia. Methods: Panetta and Lawes' approach represented delimitation with estimates of the changes in the area known to be infested and extirpation with changes in the mean time since the last detection. We retain the original structure but propose different metrics that improve biological interpretability. We illustrate the methods with a hypothetical example and real examples of invasion and treatment of branched broomrape (Orobanche ramosa L.) and the guava rust complex (Puccinia psidii (Winter 1884)) in Australia. Results: These examples illustrate the potential of the tool to guide decisions about the effectiveness of search and control activities. Main conclusions: The eradograph is a graphical data summary tool that provides insight into the progress of eradication. Our correction and extension of the tool make it easier to interpret and provide managers with better decision support. © 2013 John Wiley & Sons Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To develop approaches to the evaluation of programmes whose strategic objectives are to halt or slow weed spread. Location: Australia. Methods: Key aspects in the evaluation of weed containment programmes are considered. These include the relevance of models that predict the effects of management intervention on spread, the detection of spread, evidence for containment failure and metrics for absolute or partial containment. Case studies documenting either near-absolute (Orobanche ramosa L., branched broomrape) or partial (Parthenium hysterophorus (L.) King and Robinson, parthenium) containment are presented. Results: While useful for informing containment strategies, predictive models cannot be employed in containment programme evaluation owing to the highly stochastic nature of realized weed spread. The quality of observations is critical to the timely detection of weed spread. Effectiveness of surveillance and monitoring activities will be improved by utilizing information on habitat suitability and identification of sites from which spread could most compromise containment. Proof of containment failure may be difficult to obtain. The default option of assuming that a new detection represents containment failure could lead to an underestimate of containment success, the magnitude of which will depend on how often this assumption is made. Main conclusions: Evaluation of weed containment programmes will be relatively straightforward if containment is either absolute or near-absolute and may be based on total containment area and direct measures of containment failure, for example, levels of dispersal, establishment and reproduction beyond (but proximal to) the containment line. Where containment is only partial, other measures of containment effectiveness will be required. These may include changes in the rates of detection of new infestations following the institution of interventions designed to reduce dispersal, the degree of compliance with such interventions, and the effectiveness of tactics intended to reduce fecundity or other demographic drivers of spread. © 2012 Blackwell Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spot or strip application of poisoned protein bait is a lure-and-kill technique used for the management of fruit flies. Knowledge of where flies occur in the crop environment is an important part of maximizing the efficacy of this tool. Bactrocera tryoni is a polyphagous pest of horticulture for which very little is known about its distribution within crops. With particular reference to edge effects, we monitored the abundance of B. tryoni in two crops of different architecture; strawberry and apple. In strawberries, we found more flies on the crop edge early in the fruiting season, which lessened gradually and eventually disappeared as the season progressed. In apple orchards, no such edge effect was observed and flies were found equally throughout the orchard. We postulated these differences may be due to differences in crop height (high vs. short) and/or crop canopy architecture (opened and branched in apple, dense and closed in strawberry). In a field cage trial, we tested these predictions using artificial plants of different height and canopy condition. Height and canopy structure type had no significant effects on fly oviposition and protein feeding, but the ‘apple’ type canopy significantly influenced resting. We thus postulate that there was an edge effect in strawberry because the crop was not providing resting sites and flies were doing so in vegetation around the field margins. The finding that B. tryoni shows different resting site preferences based on plant architecture offers the potential for strategic manipulation of the fly through specific border or inter-row plantings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three polyester bag experiments were conducted with fistulated Bos indicus steers to determine the effect of the amount and type of nitrogen (N) supplement on the digestion rate of forages different in quality. In Experiment 1, test substrates were incubated in polyester bags in the rumen of steers fed ryegrass, pangola grass, speargrass and Mitchell grass hays in a 4 by 4 Latin-square design. In Experiment 2, test substrates were incubated in polyester bags in the rumen of steers fed speargrass hay supplemented with urea and ammonium sulfate (US), branched-chain amino acids with US (USAA), casein, cottonseed meal, yeast and Chlorella algae in a 7 by 3 incomplete Latin-square design. In Experiment 3, test substrates were incubated in polyester bags in the rumen of steers fed Mitchell grass hay supplemented with increasing amounts of US or Spirulina algae (Spirulina platensis). The test substrates used in all experiments were speargrass, Mitchell grass, pangola grass or ryegrass hays. Digestion rate of the ryegrass substrate was higher than that of the speargrass substrate (P < 0.05) in Experiment 1. Supplementation with various N sources increased the degradation rate and effective degradability of all incubated substrates above that apparent in Control steers (P < 0.05; Experiment 2). Supplementation of US and Spirulina increased degradation rate and effective degradability of ryegrass, pangola grass and Mitchell grass substrates above that apparent in Control steers (P < 0.05; Experiment 3). However, there was no further response on digestion rate of the substrates in increasing supplementation levels either for US or Spirulina. In conclusion, rate of digestion was affected by forage physical and anatomical properties. Supplementation with various N sources increased rate of digestion when the Control forage ration was very low in N but once a minimum level of N supplementation was reached, irrespective of form of N or other potential growth factors, there was no further increase in rate of digestion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cattle consuming pastures low in protein have low liveweight gain due to low rumen degradable protein (RDP) supply and thus low microbial crude protein (MCP) production and efficiency of MCP production [EMCP, g MCP/kg digestible organic matter (DOM)]. Nitrogen supplements can increase MCP production and EMCP of cattle grazing low protein pastures. The objective of this study was to compare the effects of supplementation with a non-protein-N source (NPN), in this case urea and ammonium sulfate (US), with a single-cell algal protein source (Spirulina platensis), on intake, microbial protein supply and digestibility in cattle. Nine cannulated Bos indicus steers [initial liveweight 250.1 ± 10.86 (s.d.) kg] were fed Mitchell grass hay (Astrebla spp; 6.1 g N, 746 g NDF/kg DM) ad libitum and were supplied with increasing amounts of US (0, 6, 13, 19 and 33 g US DM/kg hay DM) or Spirulina 0, 0.5, 1.4, 2.5 and 6.1 g Spirulina DM/kg W.day in an incomplete Latin square design. The response of MCP production and EMCP to increasing amounts of the two supplements was different, with a greater response to Spirulina evident. The MCP production was predicted to peak at 140 and 568 g MCP/day (0.64 and 2.02 g MCP/kg W.day) for the US and Spirulina supplements, respectively. The highest measured EMCP were 92 and 166 g MCP/kg DOM for the US and Spirulina treatments at 170 and 290 g RDP/kg DOM, respectively, or a Spirulina intake of 5.7 g DM/kg W.day. Increasing RDP intake from US and Spirulina resulted in an increase in Mitchell grass hay intake and rumen NH3-N concentration and reduced the retention time of liquid and particulate markers and digesta DM, NDF and lignin in the rumen with greater changes due to Spirulina. Total DM intake peaked at a Spirulina supplement level of 4.6 g Spirulina DM/kg W.day with a 2.3-fold higher DOM intake than Control steers. Rumen NH3-N concentrations reached 128 and 264 mg NH3-N/L for the US and Spirulina treatments with a significant increase in the concentration of branched-chain fatty acids for the Spirulina treatment. The minimum retention time of liquid (Cr-EDTA; 23 and 13 h) and particulate (Yb; 34 and 22 h) markers in the rumen were significantly lower for Spirulina compared with US and lower than unsupplemented animals at 24 and 34 h for Cr-EDTA and Yb, respectively. Spirulina could be provided safely at much higher N intakes than NPN supplements. The results suggest that, at an equivalent RDP supply, Spirulina provided greater increases than US in MCP production, EMCP and feed intake of Bos indicus cattle consuming low protein forage and could also be fed safely at higher levels of N intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spot or strip application of poisoned protein bait is a lure-and-kill technique used for the management of fruit flies. Knowledge of where flies occur in the crop environment is an important part of maximizing the efficacy of this tool. Bactrocera tryoni is a polyphagous pest of horticulture for which very little is known about its distribution within crops. With particular reference to edge effects, we monitored the abundance of B. tryoni in two crops of different architecture; strawberry and apple. In strawberries, we found more flies on the crop edge early in the fruiting season, which lessened gradually and eventually disappeared as the season progressed. In apple orchards, no such edge effect was observed and flies were found equally throughout the orchard. We postulated these differences may be due to differences in crop height (high vs. short) and/or crop canopy architecture (opened and branched in apple, dense and closed in strawberry). In a field cage trial, we tested these predictions using artificial plants of different height and canopy condition. Height and canopy structure type had no significant effects on fly oviposition and protein feeding, but the 'apple' type canopy significantly influenced resting. We thus postulate that there was an edge effect in strawberry because the crop was not providing resting sites and flies were doing so in vegetation around the field margins. The finding that B. tryoni shows different resting site preferences based on plant architecture offers the potential for strategic manipulation of the fly through specific border or inter-row plantings. © 2013 Blackwell Verlag GmbH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of 3 experiments were conducted to evaluate the use of microalgae as supplements for ruminants consuming low-CP tropical grasses. In Exp. 1, the chemical composition and in vitro protein degradability of 9 algae species and 4 protein supplements were determined. In Exp. 2, rumen function and microbial protein (MCP) production were determined in Bos indicus steers fed speargrass hay alone or supplemented with Spirulina platensis, Chlorella pyrenoidosa, Dunaliella salina, or cottonseed meal (CSM). In Exp. 3, DMI and ADG were determined in B. indicus steers fed speargrass hay alone or supplemented with increasing amounts of NPN (urea combined with ammonia sulfate), CSM, or S. platensis. In Exp. 1, the CP content of S. platensis and C. pyrenoidosa (675 and 580 g/kg DM) was highest among the algae species and higher than the other protein supplements evaluated, and Schizochytrium sp. had the highest crude lipid (CL) content (198 g/kg DM). In Exp. 2, S. platensis supplementation increased speargrass hay intake, the efficiency of MCP production, the fractional outflow rate of digesta from the rumen, the concentration of NH3N, and the molar proportion of branched-chain fatty acids in the rumen fluid of steers above all other treatments. Dunaliella salina acceptance by steers was low and this resulted in no significant difference to unsupplemented steers for all parameters measured for this algae supplement. In Exp. 3, ADG linearly increased with increasing supplementary N intake from both S. platensis and NPN, with no difference between the 2 supplements. In contrast, ADG quadratically increased with increasing supplementary N intake from CSM. It was concluded that S. platensis and C. pyrenoidosa may potentially be used as protein sources for cattle grazing low-CP pastures.