101 resultados para BOTANY
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Headspace analysis and solvent extraction of the pollenbearing flower spike of Spathiphyllum cannaefolium have been conducted by GC-MS, to determine the basis of the flower spike’s attractancy to certain fruit-fly species. The major components were benzyl acetate, methyleugenol, methylchavicol, p-methoxybenzyl acetate and fatty acids. Benzyl acetate is known to be attractive to D. cueurbitae, D. dorsalis and C. capitata (representing the three different ‘male-lure categories’) and methyleugenol (one of these male-lures) attracts D. cacuminatus, D. dorsalis and D. occipitalis. Thus the odoriferous flowerspike exhibits wide ranging attractancy and hence Spathiphyllum cannaefolium may have some application as a fruit-fly control measure for small orchards where ‘methyleugenol-attracted’ species (e.g. D. cacuminatus, D. dorsalis, D. occipitalis) are the dominant pests.
Resumo:
Alternative breeding strategies, based on colchicine-induced autotetraploids, have been proposed as a means of introducing disease resistance into banana breeding programs. This paper describes techniques for the in vitro induction of banana autotetraploids by the use of colchicine on cultured explants. The technique can be readily applied and large numbers of autotetraploids produced. The optimum treatment involved immersing shoot tips in a 0.5% w/v colchicine solution for 2 h under aseptic conditions. Dimethyl sulfoxide (DMSO) was applied with the colchicine treatments to increase cell permeability and so absorption of colchicine, resulting in the optimum treatment unchanged at 0.5% colchicine, but including the addition of 2% v/v DMSO. Of the shoot tips treated over 30% were induced to the autotetraploid level. Methods for in vitro selection of induced tetraploids from treated diploid plantlets were also developed. Tetraploid plants were more robust with thicker pseudostems, roots and broader leaves than diploids and they could be selected on these morphological characteristics. Mean stornatal lengths of diploid banana plants growing in vitro were significantly smaller (16.0 pm) than the tetraploids (26.9pm) and were used as a more reliable indicator of ploidy than morphological criteria alone. A root tip squash technique using carbol fuchsin was developed for positive confirmation of ploidy change by chromosome counts. Although chimerism and reversion to the diploid form occurred, it was not considered a problem because of the large number of autotetraploids induced. Stable autotetraploids were recovered and established in the field and were characterised by their large, drooping leaves and thick pseudostems. They have retained these characteristics for more than 3 years in the field.
Resumo:
Phosphonate fungicides are used widely in the control of diseases caused by Phytophthora cinnamomi Rands. For the most part phosphonate is seen as a safe to use on crops with phytotoxicity rare. However, recent research has shown that phosphonate has detrimental effects on the floral biology of some indigenous Australian plants. Since phosphonate fungicides are regularly used for the control of Phytophthora root rot in avocados, research was carried out to study the translocation of phosphonate fungicide in 'Hass' trees and any effects on their floral biology. Field-grown trees were sprayed with 0, 0.06 or 0.12 M mono-dipotassium phosphonate (pH 7.2) at summer flush maturity, floral bud break or anthesis. Following treatment, phosphonic acid concentrations were determined in leaves, roots, inflorescence rachi and flowers and in vitro pollen germination and pollen tube growth studied. Phosphonic acid concentration in the roots and floral parts was related to their sink strength at the respective times of application with concentration in roots highest (36.9.mg g±1) after treatment at summer flush maturity and in flowers (234.7 mg g±1) after treatment during early anthesis. Phosphonate at >0.03 M was found to be significantly phytotoxic to in vitro pollen germination and pollen tube growth. However, this rate gave a concentration far in excess of that measured in plant tissues following standard commercial applications of mono-dipotassium phosphonate fungicide. There was a small effect on pollen germination and pollen tube growth when 0.06 and 0.12 M mono-dipotassium phosphonate was applied during early anthesis. However, under favourable pollination and fruit set conditions it is not expected to have commercial impact on tree yield. However, there may be detrimental commercial implications from phosphonate sprays at early anthesis if unfavourable climatic conditions for pollination and fruit set subsequently occur. A commercial implication from this study is that phosphonic acid root concentrations can be elevated and maintained with strategic foliar applications of phosphonate fungicide timed to coincide with peaks in root sink strength. These occur at the end of the spring and summer flushes when shoot growth is relatively quiescent. Additional foliar applications may be advantageous in under high disease-pressure situations but where possible should be timed to minimize overlap with other significant growth events in the tree such as rapid inflorescence, and fruit development and major vegetative flushing.
Resumo:
The aim of this study is to identify the biochemical mechanism of phosphine toxicity and resistance, using Caenorhabditis elegans as a model organism. To date, the precise mode of phosphine action is unclear. In this report, we demonstrate the following dose-dependent actions of phosphine, in vitro: (1) reduction of ferric iron (Fe3+) to ferrous iron (Fe2+), (2) release of iron from horse ferritin, (3) and the peroxidation of lipid as a result of iron release from ferritin. Using in situ hybridization, we show that the ferritin genes of C. elegans, both ferritin-1 and ferritin-2, are expressed along the digestive tract with greatest expression at the proximal and distal ends. Basal expression of the ferritin-2 gene, as determined by quantitative PCR, is approximately 80 times that of ferritin-1. However, transcript levels of ferritin-1 are induced at least 20-fold in response to phosphine, whereas there is no change in the level of ferritin-2. This resembles the reported pattern of ferritin gene regulation by iron, suggesting that phosphine toxicity may be related to an increase in the level of free iron. Indeed, iron overload increases phosphine toxicity in C. elegans at least threefold. Moreover, we demonstrate that suppression of ferritin-2 gene expression by RNAi, significantly increases sensitivity to phosphine. This study identifies similarities between phosphine toxicity and iron overload and demonstrates that phosphine can trigger iron release from storage proteins, increasing lipid peroxidation, leading to cell injury and/or cell death.
Resumo:
Daikon and radish sprouts contain high levels of glucoraphenin, a glucosinolate which hydrolyses to form sulphoraphene. Sulphoraphene, like sulphoraphane from broccoli, is a potent inducer of phase 2 detoxification enzymes and consequently has potential anti-cancer action. Unlike broccoli however, daikon and radish do not possess epithiospecifier protein, a protein that inhibits conversion of glucosinolates to isothiocyanates, and consequently they may represent more suitable sources of phyto-chemicals with anti-cancer potential. Concentrations of glucoraphenin were highest in the seed, declining exponentially with sprout development. The rate of decline was observed to vary considerably between varieties of daikon and radish, with some varieties maintaining significantly high levels of glucoraphenin. Varieties maintaining a high level of glucoraphenin included 'Cherry Belle' and 'French Breakfast'.
Resumo:
Prickly acacia, a Weed of National Significance or WONS, is a serious problem in Queensland particularly the Mitchell grass downs where it was once planted to provide shade for livestock. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and biological control of the weed. Queensland has been trying to achieve biological control of prickly acacia since 1980 when it began foreign exploration in Pakistan. Since then further exploration was undertaken in Kenya, South Africa and presently India. Six insects have been released in Queensland but only two of these are established. Greater emphasis is being placed on climate matching, plant response to herbivory and genotype matching in present work and it is hoped that this approach will allow more rigorous evaluations of agent performance and better understanding of reasons for success or failure of agents.
Resumo:
Background: Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources: The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.
Resumo:
Targeting between-species effects for improvement in synthetic hybrid populations derived from outcrossing parental tree species may be one way to increase the efficacy and predictability of hybrid breeding. We present a comparative analysis of the quantitative trait loci (QTL) which resolved between from within-species effects for adventitious rooting in two populations of hybrids between Pinus elliottii and P. caribaea, an outbred F1 (n=287) and an inbred-like F2 family (n=357). Most small to moderate effect QTL (each explaining 2-5% of phenotypic variation, PV) were congruent (3 out of 4 QTL in each family) and therefore considered within-species effects as they segregated in both families. A single large effect QTL (40% PV) was detected uniquely in the F2 family and assumed to be due to a between-species effect, resulting from a genetic locus with contrasting alleles in each parental species. Oligogenic as opposed to polygenic architecture was supported in both families (60% and 20% PV explained by 4 QTL in the F 2 and F1 respectively). The importance of adventitious rooting for adaptation to survive water-logged environments was thought in part to explain oligogenic architecture of what is believed to be a complex trait controlled by many hundreds of genes.
Resumo:
The genus Corymbia is closely related to the genus Eucalyptus, and like Eucalyptus contains tree species that are important for sub-tropical forestry. Corymbia's close relationship with Eucalyptus suggests genetic studies in Corymbia should benefit from transfer of genetic information from its more intensively studied relatives. Here we report a genetic map for Corymbia spp. based on microsatellite markers identified de novo in Corymbia sp or transferred from Eucalyptus. A framework consensus map was generated from an outbred F 2 population (n = 90) created by crossing two unrelated Corymbia torelliana x C. citriodora subsp. variegata F1 trees. The map had a total length of 367 cM (Kosambi) and was composed of 46 microsatellite markers distributed across 13 linkage groups (LOD 3). A high proportion of Eucalyptus microsatellites (90%) transferred to Corymbia. Comparative analysis between the Corymbia map and a published Eucalyptus map identified eight homeologous linkage groups in Corymbia with 13 markers mapping on one or both maps. Further comparative analysis was limited by low power to detect linkage due to low genome coverage in Corymbia, however, there was no convincing evidence for chromosomal structural differences because instances of non-synteny were associated with large distances on the Eucalyptus map. Segregation distortion was primarily restricted to a single linkage group and due to a deficit of hybrid genotypes, suggesting that hybrid inviability was one factor shaping the genetic composition of the F2 population in this inter-subgeneric hybrid. The conservation of microsatellite loci and synteny between Corymbia and Eucalyptus suggests there will be substantial value in exchanging information between the two groups.
Resumo:
Quantitative trait loci (QTL) detection was carried out for adventitious rooting and associated propagation traits in a second-generation outbred Corymbia torelliana x Corymbia citriodora subspecies variegata hybrid family (n=186). The parental species of this cross are divergent in their capacity to develop roots adventitiously on stem cuttings and their propensity to form lignotubers. For the ten traits studied, there was one or two QTL detected, with some QTL explaining large amounts of phenotypic variation (e.g. 66% for one QTL for percentage rooting), suggesting that major effects influence rooting in this cross. Collocation of QTL for many strongly genetically correlated rooting traits to a single region on linkage group 12 suggested pleiotropy. A three locus model was most parsimonious for linkage group 12, however, as differences in QTL position and lower genetic correlations suggested separate loci for each of the traits of shoot production and root initiation. Species differences were thought to be the major source of phenotypic variation for some rooting rate and root quality traits because of the major QTL effects and up to 59-fold larger homospecific deviations (attributed to species differences) relative to heterospecific deviations (attributed to standing variation within species) evident at some QTL for these traits. A large homospecific/heterospecific ratio at major QTL suggested that the gene action evident in one cross may be indicative of gene action more broadly in hybrids between these species for some traits.
Resumo:
Leaf carbon (C) content, leaf nitrogen (N) content, and C:N ratio are especially useful for understanding plant-herbivore interactions and may be important in developing control methods for the invasive riparian plant Arundo donax L. We measured C content, N content, C:N ratio, and chlorophyll index (SPAD 502 reading) for 768 leaves from A. donax collected over a five year period at several locations in California, Nevada, and Texas. Leaf N was more variable than leaf C, and thus we developed a linear regression equation for estimating A. donax leaf N from the leaf chlorophyll index (SPAD reading). When applied to two independent data sets, the equation (leaf N content % = -0.63 + 0.08 x SPAD) produced realistic estimates that matched seasonal and spatial trends reported from a natural A. donax population. Used in conjunction with the handheld SPAD 502 meter, the equation provides a rapid, non-destructive method for estimating A. donax leaf quality.
Resumo:
Genetic control of vegetative propagation traits was described for a second-generation, outbred, intersectional hybrid family (N = 208) derived from two species, Corymbia torelliana (F. Muell.) K.D. Hill & L.A.S. Johnson and Corymbia variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, which contrast for propagation characteristics and in their capacity to develop lignotubers. Large phenotypic variances were evident for rooting and most other propagation traits, with significant proportions attributable to differences between clones (broad-sense heritabilities 0.2-0.5). Bare root assessment of rooting rate and root quality parameters tended to have the highest heritabilities, whereas rooting percentage based on root emergence from pots and shoot production were intermediate. Root biomass and root initiation had the lowest heritabilities. Strong favourable genetic correlations were found between rooting percentage and root quality traits such as root biomass, volume, and length. Lignotuber development on a seedling was associated with low rooting and a tendency to poor root quality in cuttings and was in accord with the persistence of species parent types due to gametic phase disequilibrium. On average, nodal cuttings rooted more frequently and with higher quality root systems, but significant cutting type x genotype interaction indicated that for some clones, higher rooting rates were obtained from tips. Low germination, survival of seedlings, and rooting rates suggested strong hybrid breakdown in this family.
Resumo:
Ceratocystis spp. include important pathogens of trees as well as apparently saprophytic species. Four species have been recorded on Eucalyptus grandis in Australia, of which only one, C. pirilliformis Barnes and M.J. Wingf., is known to be pathogenic. A recent survey of pests and diseases of Eucalyptus trees in northern Queensland revealed a species of Ceratocystis associated with the tunnels made by the aggressive wood-boring insect Phoracantha acanthocera (Macleay) (Cerambicydae: Coleoptera). The aim of the present study was to identify the fungus based on morphological characteristics and comparisons of DNA sequence data for three gene regions. The fungus peripherally resembles C. fimbriata Ell. and Halst. but differs from this species most obviously by having much darker mycelium, longer ascomatal necks, segmented hyphae and an absence of aleuroconidia. Comparisons of combined sequence data confirmed that the Ceratocystis sp. from P. acanthocera represents an undescribed taxon, which is provided with the name Ceratocystis atrox sp. nov. C. atrox appears to have a close relationship with P. acanthocera, although its role in the biology of the insect is unknown and its pathogenicity has not been considered.
Resumo:
To assess the International Union for Conservation of Nature (IUCN) status of Macrozamia platyrhachis F.M.Bailey, we surveyed this central Queensland cycad for its population abundance and health and its pollinator type and pollination syndrome (thermogenesis and volatile emissions). Plants are locally abundant within the 11 discrete populations surveyed, with an estimated population of 611 315 adult plants. Plants are highly restricted to a small area of occupancy, seed dispersal is nearly non-existent and extreme fires appear to have destroyed almost all seeds and seedlings and decimated the pollinators. Of known Macrozamia pollinators, only the thrips, Cycadothrips chadwicki Mound, were found on cones, and these were found in very low numbers. The pollination syndrome for this cycad appears to be unique, based on two cone traits. For one, thermogenesis peaks in early evening, a contrast with daytime peaks of other Cycadothrips-pollinated Macrozamia, but matches that of the Tranes weevil-pollinated Macrozamia machinii. In addition, cone volatiles include both previously unreported compounds as well as those reported exclusively on either Cycadothrips- or Tranes-pollinated species. Based on its small, fragmented area of occupancy, projected population declines and the unique pollination syndrome, we recommend that M. platyrhachis retain its current status as 'Endangered'. Habitat management plans should stipulate that controlled burns be avoided during cycad coning season and that wildfires be controlled to minimise damage to seedlings and pollinators.
Resumo:
Light interception is a major factor influencing plant development and biomass production. Several methods have been proposed to determine this variable, but its calculation remains difficult in artificial environments with heterogeneous light. We propose a method that uses 3D virtual plant modelling and directional light characterisation to estimate light interception in highly heterogeneous light environments such as growth chambers and glasshouses. Intercepted light was estimated by coupling an architectural model and a light model for different genotypes of the rosette species Arabidopsis thaliana (L.) Heynh and a sunflower crop. The model was applied to plants of contrasting architectures, cultivated in isolation or in canopy, in natural or artificial environments, and under contrasting light conditions. The model gave satisfactory results when compared with observed data and enabled calculation of light interception in situations where direct measurements or classical methods were inefficient, such as young crops, isolated plants or artificial conditions. Furthermore, the model revealed that A. thaliana increased its light interception efficiency when shaded. To conclude, the method can be used to calculate intercepted light at organ, plant and plot levels, in natural and artificial environments, and should be useful in the investigation of genotype-environment interactions for plant architecture and light interception efficiency. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.