6 resultados para BOS-INDICUS HEIFERS

em eResearch Archive - Queensland Department of Agriculture


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Response curves were established for different supplements, offered at intakes ranging from 0 to 20 g/kg liveweight (W).day to young Bos indicus crossbred steers fed low-quality Rhodes grass (Chloris gayana) hay ad libitum in two pen experiments. Supplements included protein meals of varying rumen-degradability (cottonseed meal (CSM) or fishmeal), as well as ‘energy sources’ comprising grains of high and low ruminal starch degradability (barley and sorghum) and a highly fermentable sugar source (molasses), with all diets adjusted for rumen-degradable nitrogen and mineral content. Unsupplemented steers gained 0.08 and 0.15 kg/day, in Experiments 1 and 2, respectively. Growth of steers increased linearly with intake of ‘energy source’ supplements in increasing order of molasses, sorghum and barley (all differences P < 0.05). Steer growth rate also increased linearly with fishmeal, albeit over a narrow intake range (0–4.1 g/kg W.day), whereas the response with CSM was asymptotic, showing a steep response at low intake before levelling at ~1.2 kg/day. All supplement types were associated with a linear reduction in hay intake by the steers (energy substitution) where the reduction was greater (P < 0.05) for barley and molasses (not different) than for sorghum (P < 0.05), and for fishmeal compared with CSM (P < 0.05). In concurrent metabolism studies with the same rations, organic matter digestibility of the total ration (561–578 g/kg DM, unsupplemented) was increased linearly by barley and molasses (both P < 0.05) but was unaffected by CSM and sorghum supplements. The efficiency of microbial protein synthesis in steers increased linearly, from 91 g microbial crude protein/kg digestible organic matter (unsupplemented), in both molasses and CSM-supplemented steers, with the trend for a higher response to molasses (P = 0.05), and appeared most closely related to digestible organic matter intake. The response curves from these studies provide the practical framework upon which to formulate rations for cattle grazing low-quality forages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dose response curves to various supplements were established in two pen-feeding experiments (Exp1 and Exp2) with Bos indicus crossbred steers of two age groups (Young, 10–12 months; Old, 33–36 months) fed low-quality tropical grass hays ad libitum. Diets included supplements based on (Exp1) cottonseed meal (CSM; intake (as fed) 0–10 g/kg liveweight (W).day) and a barley mix (Bar; 0–20 g/kg W.day) and (Exp2) a molasses mix (MUP) and a Bar mix, both fed at 0–20 g/kg W.day. Urea was provided with the Bar mixes and urea/copra meal with the MUP mix. Growth rates of Young steers increased linearly with Bar and MUP supplements but asymptotically with CSM whereas those of Old steers increased asymptotically with all supplement types. With supplement intake expressed on a liveweight basis (g/kg W.day), responses were greater for both steer age groups with CSM compared with Bar (Young, P < 0.001; Old, P < 0.01) and Bar compared with MUP treatments (Young, P < 0.01; Old, P < 0.05). Furthermore, Old steers outperformed their Young counterparts with both CSM (P < 0.05) and Bar (P < 0.001) supplements fed in Exp1 and with Bar and MUP supplements (P < 0.01) fed in Exp2. When supplement intake was expressed in absolute terms (kg/day), growth responses were not different between age groups for different supplements except that Old steers had a higher daily W gain on Bar than their Young counterparts (P < 0.05). Intake of hay (W-corrected) was higher for Young compared with Old steers without supplement but was variably reduced for both steer groups with increasing supplement intake. The results of these experiments have implications for supplement formulation for steers at different stages of maturity grazing low-quality forages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of 3 experiments were conducted to evaluate the use of microalgae as supplements for ruminants consuming low-CP tropical grasses. In Exp. 1, the chemical composition and in vitro protein degradability of 9 algae species and 4 protein supplements were determined. In Exp. 2, rumen function and microbial protein (MCP) production were determined in Bos indicus steers fed speargrass hay alone or supplemented with Spirulina platensis, Chlorella pyrenoidosa, Dunaliella salina, or cottonseed meal (CSM). In Exp. 3, DMI and ADG were determined in B. indicus steers fed speargrass hay alone or supplemented with increasing amounts of NPN (urea combined with ammonia sulfate), CSM, or S. platensis. In Exp. 1, the CP content of S. platensis and C. pyrenoidosa (675 and 580 g/kg DM) was highest among the algae species and higher than the other protein supplements evaluated, and Schizochytrium sp. had the highest crude lipid (CL) content (198 g/kg DM). In Exp. 2, S. platensis supplementation increased speargrass hay intake, the efficiency of MCP production, the fractional outflow rate of digesta from the rumen, the concentration of NH3N, and the molar proportion of branched-chain fatty acids in the rumen fluid of steers above all other treatments. Dunaliella salina acceptance by steers was low and this resulted in no significant difference to unsupplemented steers for all parameters measured for this algae supplement. In Exp. 3, ADG linearly increased with increasing supplementary N intake from both S. platensis and NPN, with no difference between the 2 supplements. In contrast, ADG quadratically increased with increasing supplementary N intake from CSM. It was concluded that S. platensis and C. pyrenoidosa may potentially be used as protein sources for cattle grazing low-CP pastures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loose mineral mix (LMM) supplements based on ingredients such as salt, urea and minerals offered ad libitum are widely used to provide additional nutrients to grazing cattle, but it is often difficult to achieve target intakes. An experiment with heifers grazing mature tropical pasture examined the effects of substituting 80, 160 or 320 g/kg of the salt in a LMM supplement with cottonseed meal on the voluntary intake of the LMM supplements by paddock groups of heifers over 10 weeks. Average voluntary intake of a LMM containing (g/kg) 640 salt, 300 urea and 60 ammonium sulfate (40.2 g DM and 6.14 g total nitrogen/day) was increased linearly (P < 0.001) to 50.8 g DM and 8.88 g total nitrogen/day when up to 320 g/kg cottonseed meal was substituted for salt in the LMM. This increase in intake of nitrogen in LMM was due to the increase in voluntary intake of the supplement rather than the increased nitrogen concentration of supplement. The distribution of daily intake of supplement within paddock groups of heifers was estimated during Weeks 5 and 10 using supplements labelled with lithium sulfate. Neither the coefficient of variation within paddock groups of heifers in supplement intake (mean 96%), nor the proportion of non-consumers of supplement (mean 17%), was changed (P > 0.05) by substitution of salt with cottonseed meal. In conclusion, the inclusion of a palatable protein meal into LMM increased the voluntary intake of this type of supplement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experiments tested the tolerance of steers (Bos taurus) to sorghum ergot (Claviceps africana) during cooler months in south-east Queensland. Sorghum grain containing 2.8% ergot and 28 mg/kg ergot alkaloids (84% dihydroergosine, 10% dihydroelymoclavine, 6% festuclavine) was incorporated into feedlot rations. In a previous study in summer–autumn, ergot (1.1–4.4 mg alkaloids/kg ration) severely reduced performance in steers when the temperature–humidity index (THI; dry bulb temperature °C + 0.36 dew-point temperature °C + 41.2) was ~70, whereas a THI of ~79 was tolerated by steers fed ergot-free rations. Experiment 1 was conducted in winter–spring, with rations containing 0, 2.8, 5.6, 8.2 or 11.2 mg ergot alkaloids/kg ration. All ergot inclusions depressed feed intake (14% average reduction) and growth rate (34% average reduction), even when the weekly average daily THI was less than 65. Rectal temperatures were occasionally elevated in ergot-fed steers (P < 0.05), primarily when the THI exceeded ~65. All ergot inclusions depressed plasma prolactin concentrations in steers. Experiment 2 was predominantly carried out in winter, with weekly average daily THI <65 throughout the experiment. Rations containing 0, 0.28, 0.55 or 1.1 mg ergot alkaloids/kg were fed for 4 weeks but produced no significant effect on feed intakes and growth rates of steers. Alkaloid concentrations were then changed to 0, 2.1, 4.3 and 1.1 mg/kg, respectively. Subsequently, feed intakes declined by 17.5% (P < 0.05), and growth rates by 28% (P > 0.05) in the group receiving 4.3 mg/kg alkaloid, compared with Controls. Plasma prolactin concentrations were depressed, relative to the Controls, by dietary alkaloid inclusion greater than 1.1 mg/kg, with alkaloid intake of 4.3 mg/kg causing the greatest reduction (P < 0.05). Cattle performance in these studies shows steers can tolerate up to ~2 mg ergot alkaloid/kg (0.2% ergot) in feedlot rations under low THI conditions (< ~60–65), but previous findings indicate a much lower threshold will apply at higher THI (>65).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experiments tested the tolerance of steers (Bos taurus) to sorghum ergot (Claviceps africana) during cooler months in south-east Queensland. Sorghum grain containing 2.8% ergot and 28 mg/kg ergot alkaloids (84% dihydroergosine, 10% dihydroelymoclavine, 6% festuclavine) was incorporated into feedlot rations. In a previous study in summer–autumn, ergot (1.1–4.4 mg alkaloids/kg ration) severely reduced performance in steers when the temperature–humidity index (THI; dry bulb temperature °C + 0.36 dew-point temperature °C + 41.2) was ~70, whereas a THI of ~79 was tolerated by steers fed ergot-free rations. Experiment 1 was conducted in winter–spring, with rations containing 0, 2.8, 5.6, 8.2 or 11.2 mg ergot alkaloids/kg ration. All ergot inclusions depressed feed intake (14% average reduction) and growth rate (34% average reduction), even when the weekly average daily THI was less than 65. Rectal temperatures were occasionally elevated in ergot-fed steers (P < 0.05), primarily when the THI exceeded ~65. All ergot inclusions depressed plasma prolactin concentrations in steers. Experiment 2 was predominantly carried out in winter, with weekly average daily THI <65 throughout the experiment. Rations containing 0, 0.28, 0.55 or 1.1 mg ergot alkaloids/kg were fed for 4 weeks but produced no significant effect on feed intakes and growth rates of steers. Alkaloid concentrations were then changed to 0, 2.1, 4.3 and 1.1 mg/kg, respectively. Subsequently, feed intakes declined by 17.5% (P < 0.05), and growth rates by 28% (P > 0.05) in the group receiving 4.3 mg/kg alkaloid, compared with Controls. Plasma prolactin concentrations were depressed, relative to the Controls, by dietary alkaloid inclusion greater than 1.1 mg/kg, with alkaloid intake of 4.3 mg/kg causing the greatest reduction (P < 0.05). Cattle performance in these studies shows steers can tolerate up to ~2 mg ergot alkaloid/kg (0.2% ergot) in feedlot rations under low THI conditions (< ~60–65), but previous findings indicate a much lower threshold will apply at higher THI (>65).