3 resultados para BIOASSAY IN MICE

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immunogenicity of P97 adhesin repeat region R1 (P97R1) of Mycoplasma hyopneumoniae, an important pathogenesis-associated region of P97, was evaluated in mice as a mucosal vaccine. Mice were immunized orally with attenuated Salmonella typhimurium aroA strain CS332 harbouring a eukaryotic or prokaryotic expression vector encoding IP97R1. Local and systemic immune responses were analysed by ELISA on mouse sera, lung washes and splenocyte supernatants following splenocyte stimulation with specific antigens in vitro. Although no P97R1-specific antibody responses were detected in serum and lung washes, significant gamma interferon was produced by P97R1-stimulated splenocytes from mice immunized orally with S. typhimurium aroA harbouring either expression system, indicating induction of a cell-mediated immune response. These results suggested that live bacterial vectors carrying DNA vaccines or expressing heterologous antigens preferentially induce a Th1 response. Surprisingly, however, mice immunized with the vaccine carrier S. typhimurium aroA CS332 induced serum IgG, but not mucosal IgA, against P97R1 or S. typhimurium aroA CS332 whole-cell lysate, emphasizing the importance of assessing the suitability of attenuated S. typhimurium antigen-carrier delivery vectors in the mouse model prior to their evaluation as potential vaccines in the target species, which in this instance was pigs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mycoplasma hyopneumoniae ribonucleotide reductase R2 subunit (NrdF) gene fragment was cloned into eukaryotic and prokaryotic expression vectors and its immunogenicity evaluated in mice immunized orally with attenuated Salmonella typhimurium aroA CS332 harboring either of the recombinant expression plasmids. We found that NrdF is highly conserved among M. hyopneumoniae strains. The immunogenicity of NrdF was examined by analyzing antibody responses in sera and lung washes, and the cell-mediated immune (CMI) response was assessed by determining the INF-[gamma] level produced by splenocytes upon in vitro stimulation with NrdF antigen. S. typhimurium expressing NrdF encoded by the prokaryotic expression plasmid (pTrcNrdF) failed to elicit an NrdF-specific serum or secretory antibody response, and IFN-[gamma] was not produced. Similarly, S. typhimurium carrying the eukaryotic recombinant plasmid encoding NrdF (pcNrdF) did not induce a serum or secretory antibody response, but did elicit significant NrdF-specific IFN-[gamma] production, indicating induction of a CMI response. However, analysis of immune responses against the live vector S. typhimurium aroA CS332 showed a serum IgG response but no mucosal IgA response in spite of its efficient invasiveness in vitro. In the present study we show that the DNA vaccine encoding the M. hyopneumoniae antigen delivered orally via a live attenuated S. typhimurium aroA can induce a cell-mediated immune response. We also indicate that different live bacterial vaccine carriers may have an influence on the type of the immune response induced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 [small mu ]g Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 [small mu ]g dose of E2 adsorbed to 250 [small mu ]g HMSA was compared to immunisation with Opti-E2 (50 [small mu ]g) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 [small mu ]g). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine.