3 resultados para BERNARD, CLAUDIO

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower water availability coupled with labor shortage has resulted in the increasing inability of growers to cultivate puddled transplanted rice (PTR). A field study was conducted in the wet season of 2012 and dry season of 2013 to evaluate the performance of five rice establishment methods and four weed control treatments on weed management, and rice yield. Grass weeds were higher in dry-seeded rice (DSR) as compared to PTR and nonpuddled transplanted rice (NPTR). The highest total weed density (225-256plantsm-2) and total weed biomass (315-501gm-2) were recorded in DSR while the lowest (102-129plantsm-2 and 75-387gm-2) in PTR. Compared with the weedy plots, the treatment pretilachlor followed by fenoxaprop plus ethoxysulfuron plus 2,4-D provided excellent weed control. This treatment, however, had a poor performance in NPTR. In both seasons, herbicide efficacy was better in DSR and wet-seeded rice. PTR and DSR produced the maximum rice grain yields. The weed-free plots and herbicide treatments produced 84-614% and 58-504% higher rice grain yield, respectively, than the weedy plots in 2012, and a similar trend was observed in 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February–April) for the Pretoria site, summer (November–January) for the Zululand site and spring (August–October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents.